0000000000180294

AUTHOR

Scott L. Collins

0000-0002-0193-2892

showing 2 related works from this author

Change in dominance determines herbivore effects on plant biodiversity

2018

Herbivores alter plant biodiversity (species richness) in many of the world’s ecosystems, but the magnitude and the direction of herbivore effects on biodiversity vary widely within and among ecosystems. One current theory predicts that herbivores enhance plant biodiversity at high productivity but have the opposite effect at low productivity. Yet, empirical support for the importance of site productivity as a mediator of these herbivore impacts is equivocal. Here, we synthesize data from 252 large-herbivore exclusion studies, spanning a 20-fold range in site productivity, to test an alternative hypothesis—that herbivore-induced changes in the competitive environment determine the response …

0106 biological sciences010504 meteorology & atmospheric sciencesIMPACTBiodiversity01 natural sciencesGrasslandRICHNESS2. Zero hungerarotMammalsgeography.geographical_feature_categoryPRODUCTIVITYEcologykasvillisuuseliöyhteisötBiodiversityPlantsGrasslandekologiaGrazingkasvinsyöjätinternationalDIVERSITY DEPENDS[SDE]Environmental SciencesDesert ClimateCIENCIAS NATURALES Y EXACTASCONSUMERnurmetBiologyECOLOGY010603 evolutionary biologyEnvironmental scienceCiencias BiológicasHigh productivitysavannitDominance (ecology)AnimalsEcosystemCommunity ecologyHerbivoryLife Below WaterEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesHerbivoregeographyEcología15. Life on landHerbaceous plantRESOURCE CONTROLbiodiversiteettiMeta-analysisMedio Ambiente13. Climate actionSpecies richnessVEGETATIONCOMMUNITIEScommunity ecology
researchProduct

Mechanisms of shrub encroachment into Northern Chihuahuan Desert grasslands and impacts of climate change investigated using a cellular automata model

2016

Arid and semiarid grasslands of southwestern North America have changed dramatically over the last 150 years as a result of woody plant encroachment. Overgrazing, reduced fire frequency, and climate change are known drivers of woody plant encroachment into grasslands. In this study, relatively sim- ple algorithms for encroachment factors (i.e., grazing, grassland fires, and seed dispersal by grazers) are proposed and implemented in the ecohydrological Cellular-Automata Tree Grass Shrub Simulator (CAT- GraSS). CATGraSS is used in a 7.3 km 2 rectangular domain located in central New Mexico along a zone of grassland to shrubland transition, where shrub encroachment is currently active. CATGraS…

0106 biological sciencesgeographyHerbivoreEcohydrologygeography.geographical_feature_category010504 meteorology & atmospheric sciencesEcologyved/biologySeed dispersalSettore ICAR/02 - Costruzioni Idrauliche E Marittime E Idrologiaved/biology.organism_classification_rank.speciesShrub encroachmentClimate change010603 evolutionary biology01 natural sciencesShrubAridGrasslandShrublandCA modelClimate changeEnvironmental scienceOvergrazing0105 earth and related environmental sciencesWater Science and TechnologyAdvances in Water Resources
researchProduct