0000000000180346

AUTHOR

Alexandre Luiz Souto Borges

The importance of correct implants positioning and masticatory load direction on a fixed prosthesis

Background Through the biomechanical study of dental implants, it is possible to understand the dissipation effects of masticatory loads in different situations and prevent the longevity of osseointegration. Aims: To evaluate the microstrains generated around external hexagon implants, using axial and non-axial loads in a fixed four-element prosthesis with straight implants and implants inclined at 17°. Material and Methods Three implants were modeled using CAD software following the manufacturer's measurements. Then, implants were duplicated and divided into two groups: one with straight implants and respective abutments, and the other with angled implants at 17° and respective abutments. …

research product

Influence of different restorative materials on the stress distribution in dental implants

Background To assist clinicians in deciding the most suitable restorative materials to be used in the crowns and abutment in implant rehabilitation. Material and methods For finite element analysis (FEA), a regular morse taper implant was created using a computer aided design software. The implant was inserted at the bone model with 3 mm of exposed threads. An anatomic prosthesis representing a first maxillary molar was modeled and cemented on the solid abutment. Considering the crown material (zirconia, chromium-cobalt, lithium disilicate and hybrid ceramic) and abutment (Titanium and zirconia), the geometries were multiplied, totaling eight groups. In order to perform the static analysis,…

research product

Stress distribution of complete-arch implant-supported prostheses reinforced with silica-nylon mesh

Made available in DSpace on 2020-12-12T01:20:51Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-01-01 Background: This study evaluated the presence of a silica-nylon mesh and two cantilever lengths on the biomechanical behavior of complete-arch implant-supported prostheses. Material and Methods: Twenty-four (24) complete mandibular arch implant-supported prostheses were divided into 4 groups according to the presence of reinforcing mesh (with or without) and the cantilever length (molar-15 mm or premolar-5 mm). The specimens were submitted to strain gauge analysis (30-kgf, 10 s) at different points (molar and premolar). Three-dimensional models were created based on the in vitro spec…

research product

Effect of framework type on survival probability of implant-supported temporary crowns : an in vitro study

Made available in DSpace on 2020-12-12T01:29:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2020-01-01 Background: This in vitro study evaluated the effect of framework type on the survival probability of temporary implant-supported crowns and on the implant platform structure after dynamic fatigue. Material and Methods: Thirty (30) external hexagon implants (3.75 x 10 mm) were embedded in acrylic resin following the ISO-14801. Standardized temporary crowns (n=10, N=30) were manufactured in acrylic resin and divided according to the framework type: Total plastic, Plastic with CoCr base and Titanium. The crowns were installed onto the implants (20N. cm) and fatigued (100N, 2 Hz) to det…

research product

Mechanical behavior of implant assisted removable partial denture for Kennedy class II

Made available in DSpace on 2020-12-12T01:22:13Z (GMT). No. of bitstreams: 0 Previous issue date: 2020-01-01 Background: This study evaluated the mechanical response of a removable partial denture (RPD) in Kennedy Class II according to being associated or not with implants. Material and Methods: Four RPDs were manufactured for a Kennedy Class II: CRPD-Conventional RPD, RPD+ 1M, RPD+2M and RPD+12M, respectively, signifying implant assisted RPDs with the implant installed in the first molar, second molar, and in the first and second molars. The finite element method was used to determine the most damaged support tooth under compressive load (300N, 10s) and strain gauge analysis was used to ev…

research product

A study on stress distribution to cement layer and root dentin for post and cores made of CAD/CAM materials with different elasticity modulus in the absence of ferrule

Background To evaluate the stress distribution in a maxillary central incisor with different post and cores made of six CAD/CAM materials with different elastic modulus in the absence of ferrule using the finite element analysis. Material and methods A three-dimensional endodontically treated maxillary central incisor restored with an all-ceramic crown was modelled in Rhinoceros (5.0 SR8, McNeel). The geometries were analyzed in ANSYS 17.2 (ANSYS Inc.) considering isotropic, homogeneous, linearly elastic materials with perfectly bonded contacts. The elastic moduli (E) of the post-and-cores defined the groups to be compared: nanoceramic resin (E=12.8GPa); composite resin (E=16GPa); hybrid ce…

research product

Influence of substrate design for in vitro mechanical testing

Background: The goal of this study was to evaluate the influence of dental substrate simulator material, and the presence of root and periodontal ligament on the stress distribution in an adhesively-cemented monolithic crown.Material and methods: Five (5) 3D models according to the substrate simulator material and shape were modeled with CAD software for conducting non-linear finite element analysis (FEA): Tooth with and without periodontal ligament - subgroup "pl" (groups Tooth+pl and Tooth-pl), machined tooth in epoxy-resin with and without pulp chamber - subgroup "pc" (ER+pc and ER-pc) and simplified epoxy-resin substrate without pulp chamber and roots (SiER). Next, adhesively-cemented m…

research product