0000000000180373

AUTHOR

Colin Brownlee

showing 4 related works from this author

Responses of marine benthic microalgae to elevated CO2

2011

Increasing anthropogenic CO emissions to the atmosphere are causing a rise in pCO concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO concentrations increased. CO enrichment caused significant increa…

0106 biological sciencesSettore BIO/07 - EcologiaChlorophyll aBiogeochemical cycleEcologybiologyPrimary producersEcology010604 marine biology & hydrobiologyAquatic Scienceocean acidification climate change co2 vent mediterraneanbiology.organism_classification010603 evolutionary biology01 natural sciencesColonisationchemistry.chemical_compoundDiatomchemistry13. Climate actionAbundance (ecology)Benthic zone14. Life underwaterPeriphytonEcology Evolution Behavior and SystematicsMARINE BIOLOGY
researchProduct

The Ectocarpus genome and the independent evolution of multicellularity in brown algae

2010

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of…

0106 biological sciencesLineage (evolution)Molecular Sequence DataPhaeophyta01 natural sciencesGenomeEvolution Molecular03 medical and health sciencesAlgae[SDV.BDD] Life Sciences [q-bio]/Development BiologyBotanyBIOLOGIE CELLULAIREAnimals14. Life underwater[SDV.BDD]Life Sciences [q-bio]/Development Biologyflore marinePhylogenyOrganismComputingMilieux_MISCELLANEOUSphéophycées030304 developmental biology0303 health sciencesGenomeMultidisciplinarybiologyEctocarpus siliculosusAlgal ProteinsEukaryotaPigments BiologicalEctocarpus15. Life on landbiology.organism_classificationBiological EvolutionBrown algaeMulticellular organismEvolutionary biologyalgues brunesBiologieSignal Transduction010606 plant biology & botany
researchProduct

The Ectocarpus Genome and Brown Algal Genomics

2012

Brown algae are important organisms both because of their key ecological roles in coastal ecosystems and because of the remarkable biological features that they have acquired during their unusual evolutionary history. The recent sequencing of the complete genome of the filamentous brown alga Ectocarpus has provided unprecedented access to the molecular processes that underlie brown algal biology. Analysis of the genome sequence, which exhibits several unusual structural features, identified genes that are predicted to play key roles in several aspects of brown algal metabolism, in the construction of the multicellular bodyplan and in resistance to biotic and abiotic stresses. Information fr…

0106 biological sciencesWhole genome sequencing0303 health sciencesbiologyEcologyHeterokontfungifood and beveragesGenomicsEctocarpusbiology.organism_classification01 natural sciencesGenomeBrown algae03 medical and health sciencesMulticellular organismEvolutionary biology14. Life underwaterGene030304 developmental biology010606 plant biology & botany
researchProduct

Responses of marine benthic microalgae to elevated CO2

2013

Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant …

Mediterranean Sea Acidification in a Changing Climate (MedSeA)
researchProduct