6533b820fe1ef96bd1279a63
RESEARCH PRODUCT
The Ectocarpus genome and the independent evolution of multicellularity in brown algae
Jean-marc AuryFrithjof C. KüpperDiego Miranda-saavedraJohn H. F. BothwellClaire JubinChris BowlerBernhard GschloesslJames W. TregearAndrés RitterAndrew E. AllenCarolyn A. NapoliLudovic DelageBernard KloaregTakahiro YamagishiPi Nyvall-collénSvenja HeeschJulia MoralesGaelle SamsonKei KimuraGa Youn ChoGrigoris D. AmoutziasYves Van De PeerSimon M. DittamiKenny BilliauJulie PoulainFrançois ArtiguenaveSylvie DoulbeauMarek EliášBank BeszteriCarl J. CarranoDaniel LangFlorian MaumusStefan A. RensingJonathan H. BadgerBéatrice SegurensMartina StrittmatterSylvie RousvoalHervé MoreauPatrice LerougeColin BrownleeBetsy ReadAkira F. PetersJ. Mark CockCorinne Da SilvaDeclan C. SchroederCatherine BoyenPierre RouzéEric BonnetJonas CollénSusana M. CoelhoAude Le BailKamel JabbariDavid R. NelsonThierry TononPascal J. LopezVéronique AnthouardHadi QuesnevilleManoj P. SamantaDelphine ScornetKlaus ValentinNicolas DelaroqueBénédicte CharrierCindy MartensPeter Von DassowMartin LohrGarry FarnhamChikako NagasatoClaire M. M. GachonGurvan MichelLieven SterckPhilippe PotinErwan CorreCatherine LeblancTaizo MotomuraCyril PommierPatrick WinckerHiroshi Kawaisubject
0106 biological sciencesLineage (evolution)Molecular Sequence DataPhaeophyta01 natural sciencesGenomeEvolution Molecular03 medical and health sciencesAlgae[SDV.BDD] Life Sciences [q-bio]/Development BiologyBotanyBIOLOGIE CELLULAIREAnimals14. Life underwater[SDV.BDD]Life Sciences [q-bio]/Development Biologyflore marinePhylogenyOrganismComputingMilieux_MISCELLANEOUSphéophycées030304 developmental biology0303 health sciencesGenomeMultidisciplinarybiologyEctocarpus siliculosusAlgal ProteinsEukaryotaPigments BiologicalEctocarpus15. Life on landbiology.organism_classificationBiological EvolutionBrown algaeMulticellular organismEvolutionary biologyalgues brunesBiologieSignal Transduction010606 plant biology & botanydescription
Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further. © 2010 Macmillan Publishers Limited. All rights reserved.
year | journal | country | edition | language |
---|---|---|---|---|
2010-01-01 |