0000000000414735

AUTHOR

Andrés Ritter

0000-0001-7011-6824

Cellular effects of bacterial N-3-Oxo-dodecanoyl-L-Homoserine lactone on the sponge Suberites domuncula (Olivi, 1792): insights into an intimate inter-kingdom dialogue.

International audience; Sponges and bacteria have lived together in complex consortia for 700 million years. As filter feeders, sponges prey on bacteria. Nevertheless, some bacteria are associated with sponges in symbiotic relationships. To enable this association, sponges and bacteria are likely to have developed molecular communication systems. These may include molecules such as N-acyl-L-homoserine lactones, produced by Gram-negative bacteria also within sponges. In this study, we examined the role of N-3-oxododecanoyl-L-homoserine lactone (3-oxo-C12-HSL) on the expression of immune and apoptotic genes of the host sponge Suberites domuncula. This molecule seemed to inhibit the sponge inn…

research product

The Ectocarpus genome and the independent evolution of multicellularity in brown algae

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of…

research product

The Ectocarpus Genome and Brown Algal Genomics

Brown algae are important organisms both because of their key ecological roles in coastal ecosystems and because of the remarkable biological features that they have acquired during their unusual evolutionary history. The recent sequencing of the complete genome of the filamentous brown alga Ectocarpus has provided unprecedented access to the molecular processes that underlie brown algal biology. Analysis of the genome sequence, which exhibits several unusual structural features, identified genes that are predicted to play key roles in several aspects of brown algal metabolism, in the construction of the multicellular bodyplan and in resistance to biotic and abiotic stresses. Information fr…

research product