0000000000180387
AUTHOR
Robin Corgier
Space-borne Bose–Einstein condensation for precision interferometry
Space offers virtually unlimited free-fall in gravity. Bose-Einstein condensation (BEC) enables ineffable low kinetic energies corresponding to pico- or even femtokelvins. The combination of both features makes atom interferometers with unprecedented sensitivity for inertial forces possible and opens a new era for quantum gas experiments. On January 23, 2017, we created Bose-Einstein condensates in space on the sounding rocket mission MAIUS-1 and conducted 110 experiments central to matter-wave interferometry. In particular, we have explored laser cooling and trapping in the presence of large accelerations as experienced during launch, and have studied the evolution, manipulation and interf…
Collective-Mode Enhanced Matter-Wave Optics
International audience; In contrast to light, matter-wave optics of quantum gases deals with interactions even in free space and for ensembles comprising millions of atoms. We exploit these interactions in a quantum degenerate gas as an adjustable lens for coherent atom optics. By combining an interaction-driven quadrupole-mode excitation of a Bose-Einstein condensate (BEC) with a magnetic lens, we form a time-domain matter-wave lens system. The focus is tuned by the strength of the lensing potential and the oscillatory phase of the quadrupole mode. By placing the focus at infinity, we lower the total internal kinetic energy of a BEC comprising 101(37) thousand atoms in three dimensions to …