0000000000180870

AUTHOR

Andrej M. Savić

Long-Term Physical Activity May Modify Brain Structure and Function: Studies in Young Healthy Twins

Background: Physical activity (PA) is said to be beneficial to many bodily functions. However, the effects of PA in the brain are still inadequately known. The authors aimed to uncover possible brain modulation linked with PA. Here, they combine 4 of their studies with monozygotic twins, who were within-pair discordant in PA for a minimum of 1 year. Methods: The authors performed brain imaging, brain electrophysiology, and cardiovascular and body composition assessments, and collected questionnaire-based data. The present synopsis elucidates the differences associated with differing PA history in conditions without genetic variability. They present new structural and electrophysiological re…

research product

Long-term physical activity modulates brain processing of somatosensory stimuli: Evidence from young male twins.

Leisure-time physical activity is a key contributor to physical and mental health. Yet the role of physical activity in modulating cortical function is poorly known. We investigated whether precognitive sensory brain functions are associated with the level of physical activity. Physical activity history (3-yr-LTMET), physiological measures and somatosensory mismatch response (sMMR) in EEG were recorded in 32 young healthy twins. In all participants, 3-yr-LTMET correlated negatively with body fat%, r = −0.77 and positively with VO2max, r = 0.82. The fat% and VO2max differed between 15 physically active and 17 inactive participants. Trend toward larger sMMR was seen in inactive compared to ac…

research product

Bilateral activations in operculo‐insular area show temporal dissociation after peripheral electrical stimulation in healthy adults

Interhemispheric transfer is necessary for sensory integration and coordination of body sides. We studied how somatosensory input from one body side may reach both body sides. First, we investigated with 17 healthy adults in which uni‐ and bilateral brain areas were involved in consecutive stages of automatic sensory processing of non‐nociceptive peripheral stimulation. Somatosensory evoked fields (SEFs) to electrical stimulation were recorded with 306‐channel magnetoencephalography in two conditions. First, SEFs were registered following sensory radial nerve (RN) stimulation to dorsal surface of the right hand and second, following median nerve (MN) stimulation at the right wrist. Cortical…

research product

Somatosensory Brain Function and Gray Matter Regional Volumes Differ According to Exercise History : Evidence from Monozygotic Twins

Associations between long-term physical activity and cortical function and brain structure are poorly known. Our aim was to assess whether brain functional and/or structural modulation associated with long-term physical activity is detectable using a discordant monozygotic male twin pair design. Nine monozygotic male twin pairs were carefully selected for an intrapair difference in their leisure-time physical activity of at least three years duration (mean age 34 ± 1 years). We registered somatosensory mismatch response (SMMR) in EEG to electrical stimulation of fingers and whole brain MR images. We obtained exercise history and measured physical fitness and body composition. Equivalent ele…

research product

Long-term physical activity modifies automatic visual processing

Electrophysiologically registered visual mismatch negativity (vMMN) is known to represent automatic visual processing in human visual cortex. Since physical activity (PA) is generally beneficial to cerebrovascular function, we wanted to find out if automatic visual processing is affected by PA. We investigated the connection between long-term leisure-time PA and precognitive visual processing in 32 healthy young males. Participants were divided into active (n = 16) and inactive (n = 16) group according to their leisure-time PA records from the past three years. vMMN was recorded with electroencephalogram using passive oddball paradigm with visual bars. Standard (90%) and deviant (10%) stimu…

research product