0000000000180926

AUTHOR

Clémence Ragon

Delineation of the 3p14.1p13 microdeletion associated with syndromic distal limb contractures

International audience; Distal limb contractures (DLC) represent a heterogeneous clinical and genetic condition. Overall, 20–25% of the DLC are caused by mutations in genes encoding the muscle contractile apparatus. Large interstitial deletions of the 3p have already been diagnosed by standard chromosomal analysis, but not associated with a specific phenotype. We report on four patients with syndromic DLC presenting with a de novo 3p14.1p13 micro-deletion. The clinical features associated multiple contractures, feeding problems, developmental delay, and intellectual disability. Facial dysmorphism was constant with low-set posteriorly rotated ears and blepharophimosis. Review of previously r…

research product

A de novo microdeletion of SEMA5A in a boy with autism spectrum disorder and intellectual disability.

AbstractSemaphorins are a large family of secreted and membrane-associated proteins necessary for wiring of the brain. Semaphorin 5A (SEMA5A) acts as a bifunctional guidance cue, exerting both attractive and inhibitory effects on developing axons. Previous studies have suggested that SEMA5A could be a susceptibility gene for autism spectrum disorders (ASDs). We first identified a de novo translocation t(5;22)(p15.3;q11.21) in a patient with ASD and intellectual disability (ID). At the translocation breakpoint on chromosome 5, we observed a 861-kb deletion encompassing the end of the SEMA5A gene. We delineated the breakpoint by NGS and observed that no gene was disrupted on chromosome 22. We…

research product

Additional evidence to support the role of the 20q13.33 region in susceptibility to autism

research product

The DYRK1A gene is a cause of syndromic intellectual disability with severe microcephaly and epilepsy.

Background DYRK1A plays different functions during development, with an important role in controlling brain growth through neuronal proliferation and neurogenesis. It is expressed in a gene dosage dependent manner since dyrk1a haploinsufficiency induces a reduced brain size in mice, and DYRK1A overexpression is the candidate gene for intellectual disability (ID) and microcephaly in Down syndrome. We have identified a 69 kb deletion including the 5′ region of the DYRK1A gene in a patient with growth retardation, primary microcephaly, facial dysmorphism, seizures, ataxic gait, absent speech and ID. Because four patients previously reported with intragenic DYRK1A rearrangements or 21q22 microd…

research product

Homozygous Truncating Intragenic Duplication in TUSC3 Responsible for Rare Autosomal Recessive Nonsyndromic Intellectual Disability with No Clinical or Biochemical Metabolic Markers

Intellectual disability (ID), which affects around 2–3% of the general population, is classically divided into syndromic and nonsyndromic forms, with several modes of inheritance. Nonsyndromic autosomal recessive ID (NS-ARID) appears extremely heterogeneous with numerous genes identified to date, including inborn errors of metabolism. The TUSC3 gene encodes a subunit of the endoplasmic reticulum (ER)-bound oligosaccharyltransferase complex, which mediates a key step of N-glycosylation. To date, only five families with NS-ARID and TUSC3 mutations or rearrangements have been reported in the literature. All patients had speech delay, moderate-to-severe ID, and moderate facial dysmorphism. Micr…

research product