0000000000180932

AUTHOR

Klaus Dieterich

0000-0002-4362-4062

showing 4 related works from this author

Delineation of the 3p14.1p13 microdeletion associated with syndromic distal limb contractures

2014

International audience; Distal limb contractures (DLC) represent a heterogeneous clinical and genetic condition. Overall, 20–25% of the DLC are caused by mutations in genes encoding the muscle contractile apparatus. Large interstitial deletions of the 3p have already been diagnosed by standard chromosomal analysis, but not associated with a specific phenotype. We report on four patients with syndromic DLC presenting with a de novo 3p14.1p13 micro-deletion. The clinical features associated multiple contractures, feeding problems, developmental delay, and intellectual disability. Facial dysmorphism was constant with low-set posteriorly rotated ears and blepharophimosis. Review of previously r…

MalePathologymedicine.medical_specialtyContracture[SDV]Life Sciences [q-bio]Locus (genetics)FOXP1BiologyMicedistal limb contracturessymbols.namesakeExonEIF4E3Intellectual disabilityGeneticsmedicineAnimalsHumans[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]3p141p13 microdeletionGenetics (clinical)ArthrogryposisChromosome AberrationsMice KnockoutSanger sequencingGeneticsComparative Genomic Hybridization[ SDV ] Life Sciences [q-bio]ExtremitiesForkhead Transcription FactorsSyndromeFOXP1Microdeletion syndromemedicine.diseaseBlepharophimosisPhenotypeRepressor Proteins[SDV] Life Sciences [q-bio]array-CGH[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]symbolsFemale[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Chromosomes Human Pair 3FranceCarrier Proteinsintronic regulatory sequenceAmerican Journal of Medical Genetics Part A
researchProduct

Phenotypic spectrum and genomics of undiagnosed arthrogryposis multiplex congenital

2022

BackgroundArthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families.MethodsSeveral genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants.ResultsWe achieved disease gene identification in 52.7% of AMC index pati…

musculoskeletal diseasesArtrogriposi múltiple congènitaSettore BIO/18 - GENETICAhuman geneticsneuromuscular diseasesGenomicsBiologyCONTRACTURESCLASSIFICATIONdiseasessymbols.namesakeDiagnòsticGene mappingarthrogryposis multiplex congenitaExome SequencingOF-FUNCTION MUTATIONSGeneticsMedicine and Health SciencesgenomicsHumansGenetics (clinical)Exome sequencingArthrogryposisSanger sequencingGeneticsArthrogryposis multiplex congenitaGenetic heterogeneitySPINAL MUSCULAR-ATROPHYProteinsnervous system malformationsDYSTROPHYDisease gene identificationGENEHuman geneticsPedigreeETIOLOGYPhenotypesymbolsneuromuscularGenèticaTranscription Factors
researchProduct

Xq28 duplication includingMECP2in six unreported affected females: what can we learn for diagnosis and genetic counselling?

2017

Duplication of the Xq28 region, involving MECP2 (dupMECP2), has been primarily described in males with severe developmental delay, spasticity, epilepsy, stereotyped movements and recurrent infections. Carrier mothers are usually asymptomatic with an extremely skewed X chromosome inactivation (XCI) pattern. We report a series of six novel symptomatic females carrying a de novo interstitial dupMECP2, and review the 14 symptomatic females reported to date, with the aim to further delineate their phenotype and give clues for genetic counselling. One patient was adopted and among the other 19 patients, seven (37%) had inherited their duplication from their mother, including three mildly (XCI: 70…

0301 basic medicineGeneticsPediatricsmedicine.medical_specialtyGenetic counselingMECP2 duplication syndrome030105 genetics & heredityBiologymedicine.diseaseX-inactivation3. Good healthXq2803 medical and health sciencesEpilepsy0302 clinical medicineGene duplicationGeneticsmedicineAsymptomatic carrierSkewed X-inactivation030217 neurology & neurosurgeryGenetics (clinical)Clinical Genetics
researchProduct

Clinical Utility of a Unique Genome-Wide DNA Methylation Signature for KMT2A-Related Syndrome

2022

Wiedemann–Steiner syndrome (WDSTS) is a Mendelian syndromic intellectual disability (ID) condition associated with hypertrichosis cubiti, short stature, and characteristic facies caused by pathogenic variants in the KMT2A gene. Clinical features can be inconclusive in mild and unusual WDSTS presentations with variable ID (mild to severe), facies (typical or not) and other associated malformations (bone, cerebral, renal, cardiac and ophthalmological anomalies). Interpretation and classification of rare KMT2A variants can be challenging. A genome-wide DNA methylation episignature for KMT2A-related syndrome could allow functional classification of variants and provide insights into the pathoph…

Wiedemann–Steiner syndromeQH301-705.5Intellectual disability[SDV.BC]Life Sciences [q-bio]/Cellular BiologyCatalysisInorganic ChemistryKMT2A geneNeurodevelopmental disorderGrowth DisorderAbnormalities Multiple[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Biology (General)Physical and Theoretical ChemistryEpisignatureQD1-999[SDV.BC] Life Sciences [q-bio]/Cellular BiologyMolecular BiologySpectroscopyDNA methylationOrganic ChemistryNeurodevelopmental disordersCraniofacial AbnormalitieEpigeneticHypertrichosiGeneral MedicineFacieComputer Science Applications<i>KMT2A</i> geneChemistryepigenetics; DNA methylation; episignature; Wiedemann–Steiner syndrome; <i>KMT2A</i> gene; intellectual disability; neurodevelopmental disordersPhenotype[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]EpigeneticsHuman
researchProduct