0000000000181061

AUTHOR

Fanny Chalmin

0000-0002-0855-9453

Red wine extract disrupts Th17 lymphocyte differentiation in a colorectal cancer context

International audience; Scope: Scope: It is well established that immune response and inflammation promote tumoral progression. Immune cells communicate through direct contact or through cytokine secretion, and it is the pro-inflammatory status that will tip the balance toward tumor progression or anti-tumor immunity. It is demonstrated here that a red wine extract (RWE) can decrease inflammation through its action on the inflammasome complex. This study determines whether an RWE could impact other key actors of inflammation, including T helper 17 (Th17) immune cells in particular. Methods and results: Methods and results: Using an RWE containing 4.16 g of polyphenols/liter of wine, it is s…

research product

Stat3 and Gfi-1 Transcription Factors Control Th17 Cell Immunosuppressive Activity via the Regulation of Ectonucleotidase Expression

International audience; Although Th17 cells are known to promote tissue inflammation and autoimmunity, their role during cancer progression remains elusive. Here, we showed that in vitro Th17 cells generated with the cytokines IL-6 and TGF-β expressed CD39 and CD73 ectonucleotidases, leading to adenosine release and the subsequent suppression of CD4(+) and CD8(+) T cell effector functions. The IL-6-mediated activation of the transcription factor Stat3 and the TGF-β-driven downregulation of Gfi-1 transcription factor were both essential for the expression of ectonucleotidases during Th17 cell differentiation. Stat3 supported whereas Gfi-1 repressed CD39 and CD73 expression by binding to thei…

research product

Production of Adenosine by Ectonucleotidases: A Key Factor in Tumor Immunoescape

It is now well known that tumor immunosurveillance contributes to the control of cancer growth. Many mechanisms can be used by cancer cells to avoid the antitumor immune response. One such mechanism relies on the capacity of cancer cells or more generally of the tumor microenvironment to generate adenosine, a major molecule involved in antitumor T cell response suppression. Adenosine is generated by the dephosphorylation of extracellular ATP released by dying tumor cells. The conversion of ATP into adenosine is mediated by ectonucleotidase molecules, namely, CD73 and CD39. These molecules are frequently expressed in the tumor bed by a wide range of cells including tumor cells, regulatory T …

research product

SOCS3 transactivation by PPARγ prevents IL-17-driven cancer growth.

Abstract Activation of the transcription factor PPARγ by the n-3 fatty acid docosahexaenoic acid (DHA) is implicated in controlling proinflammatory cytokine secretion, but the intracellular signaling pathways engaged by PPARγ are incompletely characterized. Here, we identify the adapter-encoding gene SOCS3 as a critical transcriptional target of PPARγ. SOCS3 promoter binding and gene transactivation by PPARγ was associated with a repression in differentiation of proinflammatory T-helper (TH)17 cells. Accordingly, TH17 cells induced in vitro displayed increased SOCS3 expression and diminished capacity to produce interleukin (IL)-17 following activation of PPARγ by DHA. Furthermore, naïve CD4…

research product

Bleomycin Exerts Ambivalent Antitumor Immune Effect by Triggering Both Immunogenic Cell Death and Proliferation of Regulatory T Cells

International audience; Bleomycin (BLM) is an anticancer drug currently used for the treatment of testis cancer and Hodgkin lymphoma. This drug triggers cancer cell death via its capacity to generate radical oxygen species (ROS). However, the putative contribution of anticancer immune responses to the efficacy of BLM has not been evaluated. We make here the observation that BLM induces immunogenic cell death. In particular, BLM is able to induce ROS-mediated reticulum stress and autophagy, which result in the surface exposure of chaperones, including calreticulin and ERp57, and liberation of HMBG1 and ATP. BLM induces anti-tumor immunity which relies on calreticulin, CD8(+) T cells and inte…

research product

The receptor NLRP3 is a transcriptional regulator of TH2 differentiation.

The receptor NLRP3 is involved in the formation of the NLRP3 inflammasome that activates caspase-1 and mediates the release of interleukin 1β (IL-1β) and IL-18. Whether NLRP3 can shape immunological function independently of inflammasomes is unclear. We found that NLRP3 expression in CD4(+) T cells specifically supported a T helper type 2 (TH2) transcriptional program in a cell-intrinsic manner. NLRP3, but not the inflammasome adaptor ASC or caspase-1, positively regulated a TH2 program. In TH2 cells, NLRP3 bound the Il4 promoter and transactivated it in conjunction with the transcription factor IRF4. Nlrp3-deficient TH2 cells supported melanoma tumor growth in an IL-4-dependent manner and …

research product

Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth.

International audience; Dacarbazine (DTIC) is a cytotoxic drug widely used for melanoma treatment. However, the putative contribution of anticancer immune responses in the efficacy of DTIC has not been evaluated. By testing how DTIC affects host immune responses to cancer in a mouse model of melanoma, we unexpectedly found that both natural killer (NK) and CD8(+) T cells were indispensable for DTIC therapeutic effect. Although DTIC did not directly affect immune cells, it triggered the upregulation of NKG2D ligands on tumor cells, leading to NK cell activation and IFNγ secretion in mice and humans. NK cell-derived IFNγ subsequently favored upregulation of major histocompatibility complex cl…

research product

Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth

International audience; Chemotherapeutic agents are widely used for cancer treatment. In addition to their direct cytotoxic effects, these agents harness the host's immune system, which contributes to their antitumor activity. Here we show that two clinically used chemotherapeutic agents, gemcitabine (Gem) and 5-fluorouracil (5FU), activate the NOD-like receptor family, pyrin domain containing-3 protein (Nlrp3)-dependent caspase-1 activation complex (termed the inflammasome) in myeloid-derived suppressor cells (MDSCs), leading to production of interleukin-1β (IL-1β), which curtails anticancer immunity. Chemotherapy-triggered IL-1β secretion relied on lysosomal permeabilization and the relea…

research product

5-Fluorouracil Selectively Kills Tumor-Associated Myeloid-Derived Suppressor Cells Resulting in Enhanced T Cell–Dependent Antitumor Immunity

AbstractMyeloid-derived suppressor cells (MDSC) accumulate in the spleen and tumor bed during tumor growth. They contribute to the immune tolerance of cancer notably by inhibiting the function of CD8(+) T cells. Thus, their elimination may hamper tumor growth by enhancing antitumor T-cell functions. We have previously reported that some anticancer agents relied on T cell–dependent anticancer responses to achieve maximal efficacy. However, the effect of anticancer agents on MDSC has remained largely unexplored. In this study, we observed that gemcitabine and 5-fluorouracil (5FU) were selectively cytotoxic on MDSC. In vivo, the treatment of tumor-bearing mice with 5FU led to a major decrease …

research product

The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells

The TH9 subset of helper T cells was initially shown to contribute to the induction of autoimmune and allergic diseases, but subsequent evidence has suggested that these cells also exert antitumor activities. However, the molecular events that account for their effector properties are elusive. Here we found that the transcription factor IRF1 enhanced the effector function of TH9 cells and dictated their anticancer properties. Under TH9-skewing conditions, interleukin 1β (IL-1β) induced phosphorylation of the transcription factor STAT1 and subsequent expression of IRF1, which bound to the promoters of Il9 and Il21 and enhanced secretion of the cytokines IL-9 and IL-21 from TH9 cells. Further…

research product