6533b828fe1ef96bd1287a58
RESEARCH PRODUCT
Bleomycin Exerts Ambivalent Antitumor Immune Effect by Triggering Both Immunogenic Cell Death and Proliferation of Regulatory T Cells
Valentin DerangèreValentin DerangèreCédric RébéRomain EuvrardRomain EuvrardLudivine OdoulGrégoire MignotGrégoire MignotHélène BugautHélène BugautFrédérique VégranFrédérique VégranFrançois GhiringhelliLionel ApetohLionel ApetohFanny ChalminFanny ChalminMélanie BruchardMélanie BruchardHélène BergerHélène BergerSylvain Ladoiresubject
MouseCancer TreatmentCD8-Positive T-LymphocytesT-Lymphocytes RegulatoryHematologic Cancers and Related DisordersMice0302 clinical medicineTransforming Growth Factor beta[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyCytotoxic T cellImmune Response0303 health sciencesMultidisciplinaryCell DeathbiologyQRFOXP3Animal ModelsHematology3. Good healthCell biologyOncology030220 oncology & carcinogenesisMedicine[SDV.IMM]Life Sciences [q-bio]/ImmunologyImmunogenic cell deathFemaleLymphomasOncology AgentsResearch ArticleTumor Immunologycongenital hereditary and neonatal diseases and abnormalitiesProgrammed cell death[SDV.IMM] Life Sciences [q-bio]/ImmunologyScienceImmunologyAntineoplastic Agentschemical and pharmacologic phenomenaBleomycin03 medical and health sciencesModel OrganismsImmune systemCell Line TumorAnimalsHumansBiologyCell Proliferation030304 developmental biologyHodgkin Lymphomaurogenital systemCell growthImmunitynutritional and metabolic diseasesImmunologic SubspecialtiesChemotherapy and Drug TreatmentImmunity InnateCancer cellbiology.proteinClinical ImmunologyCalreticulindescription
International audience; Bleomycin (BLM) is an anticancer drug currently used for the treatment of testis cancer and Hodgkin lymphoma. This drug triggers cancer cell death via its capacity to generate radical oxygen species (ROS). However, the putative contribution of anticancer immune responses to the efficacy of BLM has not been evaluated. We make here the observation that BLM induces immunogenic cell death. In particular, BLM is able to induce ROS-mediated reticulum stress and autophagy, which result in the surface exposure of chaperones, including calreticulin and ERp57, and liberation of HMBG1 and ATP. BLM induces anti-tumor immunity which relies on calreticulin, CD8(+) T cells and interferon-γ. We also find that, in addition to its capacity to trigger immunogenic cell death, BLM induces expansion of Foxp3+ regulatory T (Treg) cells via its capacity to induce transforming growth factor beta (TGFβ) secretion by tumor cells. Accordingly, Treg cells or TGFβ depletion dramatically potentiates the antitumor effect of BLM. We conclude that BLM induces both anti-tumor CD8(+) T cell response and a counteracting Treg proliferation. In the future, TGFβ or Treg inhibition during BLM treatment could greatly enhance BLM anti-tumor efficacy.
year | journal | country | edition | language |
---|---|---|---|---|
2013-01-10 | PLoS ONE |