0000000000181171
AUTHOR
Seung-bum Kim
Surface Soil Moisture Retrieval Using the L-Band Synthetic Aperture Radar Onboard the Soil Moisture Active–Passive Satellite and Evaluation at Core Validation Sites
This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active–Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture retrievals using radar observations have been challenging in the past due to complicating factors of surface roughness and vegetation scattering. Here, physically based forward models of radar scattering for individual vegetation types are inverted using a time-series approach to retrieve soil moisture while correcting for the effects of static roughness and dynamic vegetation. Compared with the …
Surface soil moisture retrieval using L-band SMAP SAR data and its validation
Surface soil moisture was retrieved globally by systematically correcting for the effects of vegetation and soil surface roughness. The retrieval is enabled by employing physical-models of radar forward scattering for individual vegetation types to account for vegetation scattering and absorption, and by constraining the surface roughness effect using time-series observations. The L-band SMAP multi-polarized (HH/VV/HV) σ° data acquired globally every three days were used from mid-April to early July, 2015. Assessment was conducted over 13 rigorously-chosen core validation sites covering a wide range of biomass types, biomass amount, and soil conditions. The soil moisture retrieval reached a…
Validation of SMAP surface soil moisture products with core validation sites
Abstract The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well-calibrated in situ soil moisture measurements within SMAP product grid pixels for diverse conditions and locations. The estimation of the average soil moisture within the SMAP product grid pixels based on in situ measurements is more reliable when location specific calibration of the sensors has been performed and there is adequate replication over the spatial domain, with an up-scaling function based on analysis using independent estimates of the soil moisture distributio…