0000000000181173
AUTHOR
Dara Entekhabi
Surface Soil Moisture Retrieval Using the L-Band Synthetic Aperture Radar Onboard the Soil Moisture Active–Passive Satellite and Evaluation at Core Validation Sites
This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active–Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture retrievals using radar observations have been challenging in the past due to complicating factors of surface roughness and vegetation scattering. Here, physically based forward models of radar scattering for individual vegetation types are inverted using a time-series approach to retrieve soil moisture while correcting for the effects of static roughness and dynamic vegetation. Compared with the …
L-Band vegetation optical depth for crop phenology monitoring and crop yield assessment
Vegetation Optical Depth (VOD) at L-band is highly sensitive to the water content and above-ground biomass of vegetation. Hence, it has great potential for monitoring crop phenology and for providing crop yield forecasts. Recently, the Multi-Temporal Dual Channel Algorithm (MT -DCA) has been proposed to retrieve L-band VOD from Soil Moisture Active Passive (SMAP) measurements. In previous research, SMAP VOD has been compared to crop phenology and has been used to derive crop yield estimates. Here, we review and expand these initial research studies. In particular, we quantify the capability of VOD to detect different crop stages, and test different VOD metrics (i.e., maximum, range and inte…
Surface soil moisture retrieval using L-band SMAP SAR data and its validation
Surface soil moisture was retrieved globally by systematically correcting for the effects of vegetation and soil surface roughness. The retrieval is enabled by employing physical-models of radar forward scattering for individual vegetation types to account for vegetation scattering and absorption, and by constraining the surface roughness effect using time-series observations. The L-band SMAP multi-polarized (HH/VV/HV) σ° data acquired globally every three days were used from mid-April to early July, 2015. Assessment was conducted over 13 rigorously-chosen core validation sites covering a wide range of biomass types, biomass amount, and soil conditions. The soil moisture retrieval reached a…
Validation of SMAP surface soil moisture products with core validation sites
Abstract The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well-calibrated in situ soil moisture measurements within SMAP product grid pixels for diverse conditions and locations. The estimation of the average soil moisture within the SMAP product grid pixels based on in situ measurements is more reliable when location specific calibration of the sensors has been performed and there is adequate replication over the spatial domain, with an up-scaling function based on analysis using independent estimates of the soil moisture distributio…
Comparison of downscaling techniques for high resolution soil moisture mapping
Soil moisture impacts exchanges of water, energy and carbon fluxes between the land surface and the atmosphere. Passive microwave remote sensing at L-band can capture spatial and temporal patterns of soil moisture in the landscape. Both ESA and NASA have launched L-band radiometers, in the form of the SMOS and SMAP satellites respectively, to monitor soil moisture globally, every 3-day at about 40 km resolution. However, their coarse scale restricts the range of applications. While SMAP included an L-band radar to downscale the radiometer soil moisture to 9 km, the radar failed after 3 months and this initial approach is not applicable to developing a consistent long term soil moisture prod…
Remote sensing of vegetation dynamics in agro-ecosystems using smap vegetation optical depth and optical vegetation indices
The ESA's SMOS and the NASA's SMAP missions, launched in 2009 and 2015, respectively, are the first two missions having on-board L-band microwave sensors, which are very sensitive to the water content in soils and vegetation. Focusing on the vegetation signal at L-band, we have implemented an inversion approach for SMAP that allows deriving vegetation optical depth (VOD, a microwave parameter related to biomass and plant water content) alongside soil moisture, without reliance on ancillary optical information on vegetation. This work aims at using this new observational data to monitor the phenology of crops in major global agro-ecosystems and enhance present agricultural monitoring and pre…
Relationship between vegetation microwave optical depth and cross-polarized backscatter from multiyear Aquarius observations
Soil moisture retrieval algorithms based on passive microwave remote sensing observations need to account for vegetation attenuation and emission, which is generally parameterized as vegetation optical depth (VOD). This multisensor study tests a new method to retrieve VOD from cross-polarized radar backscattering coefficients. Three years of Aquarius/SAC-D data were used to establish a relationship between the cross-polarized backscattering coefficient σ HV and VOD derived from a multitemporal passive dual-channel algorithm (VODMT). The dependence of the correspondence is analyzed for different land use classes. There are no systematic differences in the slope for woody versus nonwoody vege…
The SMAP mission combined active-passive soil moisture product at 9 km and 3 km spatial resolutions
Abstract The NASA Soil Moisture Active Passive (SMAP) mission was launched on January 31st, 2015. The spacecraft was to provide high-resolution (3 km and 9 km) global soil moisture estimates at regular intervals by combining for the first time L-band radiometer and radar observations. On July 7th, 2015, a component of the SMAP radar failed and the radar ceased operation. However, before this occurred the mission was able to collect and process ~2.5 months of the SMAP high-resolution active-passive soil moisture data (L2SMAP) that coincided with the Northern Hemisphere's vegetation green-up and crop growth season. In this study, we evaluate the SMAP high-resolution soil moisture product deri…
Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: a comparison to higher frequencies and optical indices
Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2019.111303. Monitoring vegetation carbon in tropical regions is essential to the global carbon assessment and to evaluate the actions oriented to the reduction of forest degradation. Mainly, satellite optical vegetation indices and LiDAR data have been used to this purpose. These two techniques are limited by cloud cover and are sensitive only to the top of vegetation. In addition, the vegetation attenuation to the soil microwave emission, represented by the vegetation optical depth (VOD), has been applied for biomass estimation using frequencies ranging from 4 to 30¿GHz (C- to K-bands). Atmosphere is t…
L-Band Vegetation optical depth and effective scattering albedo estimation from SMAP
Abstract Over land the vegetation canopy affects the microwave brightness temperature by emission, scattering and attenuation of surface soil emission. Attenuation, as represented by vegetation optical depth (VOD), is a potentially useful ecological indicator. The NASA Soil Moisture Active Passive (SMAP) mission carries significant potential for VOD estimates because of its radio frequency interference mitigation efforts and because the L-band signal penetrates deeper into the vegetation canopy than the higher frequency bands used for many previous VOD retrievals. In this study, we apply the multi-temporal dual-channel retrieval algorithm (MT-DCA) to derive global VOD, soil moisture, and ef…
Mapping Carbon Stocks In Central And South America With Smap Vegetation Optical Depth
Mapping carbon stocks in the tropics is essential for climate change mitigation. Passive microwave remote sensing allows estimating carbon from deep canopy layers through the Vegetation Optical Depth (VOD) parameter. Although their spatial resolution is coarser than that of optical vegetation indices or airborne Lidar data, microwaves present a higher penetration capacity at low frequencies (L-band) and avoid cloud masking. This work compares the relationships of airborne carbon maps in Central and South America with both (i) SMAP L-band VOD at 9 km gridding and (ii) MODIS Enhanced Vegetation Index (EVI). Models to estimate carbon stocks are built from these two satellite-derived variables.…
Global L-band vegetation volume fraction estimates for modeling vegetation optical depth
The attenuation of microwave emissions through the canopy is quantified by the vegetation optical depth (VOD), which is related to the amount of water, the biomass and the structure of vegetation. To provide microwave-derived plant water estimates, one must account for biomass/structure contributions in order to extract the water component from the VOD. This study uses Aquarius scatterometer data to build an L-band global seasonality of vegetation volume fraction (d), representative of biomass/structure dynamics. The dynamic range of d is adapted for its application in a gravimetric moisture (Mg) retrieval model. Results show that d ranging from 0 to 3.35.10- 4 is needed for modelling physi…
The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product
Abstract Soil Moisture Active Passive (SMAP) mission of NASA was launched in January 2015. Currently, SMAP has an L-band radiometer and a defunct L-band radar with a rotating 6-m mesh reflector antenna. On July 7th, 2015, the SMAP radar malfunctioned and became inoperable. Consequently, the production of high-resolution active-passive soil moisture product got hampered, and only ~2.5 months (April 15th, 2015 to July 7th, 2015) of data remain available. Therefore, during the SMAP post-radar phase, many ways were examined to restart the high-resolution soil moisture product generation of the SMAP mission. One of the feasible approaches was to substitute the SMAP radar with other available SAR…
L-band vegetation optical depth seasonal metrics for crop yield assessment
Attenuation of surface microwave emission due to the overlying vegetation is proportional to the density of the canopy and to its water content. The vegetation optical depth (VOD) parameter measures this attenuation. VOD could be a valuable source of information on agroecosystems, especially at lower frequencies for which greater portion of the vegetation canopy contributes to the observed brightness temperature. In the past, visible-infrared indices have been used to provide yield estimates based on measuring the photosynthetic activity from the surface canopy layer. These indices are affected by clouds and apply only in the presence of solar illumination. In this study we instead use the …
SMAP Multi-Temporal vegetation optical depth retrieval as an indicator of crop yield trends and crop composition
Vegetation Optical Depth (VOD) is related to Vegetation Water Content (VWC). This provides new and highly valuable information for ecological and agricultural studies. In this work, VOD from the Soil Moisture Active-Passive (SMAP) satellite has been retrieved with the new Multi-Temporal Dual-Channel Algorithm (MT-DCA). Then, it has been applied to the study of crop yield trends and crop composition. The increase on VOD (¿VOD) during crop development has been compared to yield data in two selected regions located in the United States. The first region presents a heterogeneous crop composition and weak ¿VOD-yield relationship (r2=0.21). The second region presents a highly homogenous cover and…
Estimating Gravimetric Moisture of Vegetation Using an Attenuation-Based Multi-Sensor Approach
Estimating parameters for global climate models via combined active and passive microwave remote sensing data has been a subject of intensive research in recent years. A variety of retrieval algorithms has been proposed for the estimation of soil moisture, vegetation optical depth and other parameters. A novel attenuation-based retrieval approach is proposed here to globally estimate the gravimetric moisture of vegetation (m g ) and retrieve information about the amount of water [kg] per amount of wet vegetation [kg]. The parameter m g is particularly interesting for agro-ecosystems, to assess the status of growing vegetation. The key feature of the proposed approach is that it relies on mu…
Smap-based retrieval of vegetation opacity and albedo
Over land the vegetation canopy affects the microwave brightness temperature by emission, scattering and attenuation of surface soil emission. The questions addressed in this study are: 1) what is the transparency of the vegetation canopy for different biomes around the Globe at the low-frequency L-band?, 2) what is the seasonal amplitude of vegetation microwave optical depth for different biomes?, 3) what is the effective scattering at this frequency for different vegetation types?, 4) what is the impact of imprecise characterization of vegetation microwave properties on retrieval of soil surface conditions? These questions are addressed based on the recently completed one full annual cycl…
Time-variations of zeroth-order vegetation absorption and scattering at L-band
Abstract Surface soil moisture and vegetation optical depth (VOD), as an indicator of vegetation wet biomass, from passive microwave remote sensing have been increasingly applied in global ecology and climate research. Both soil moisture and VOD are retrieved from satellite brightness temperature measurements assuming a zeroth order radiative transfer model, commonly known as the tau-omega model. In this model the emission of a vegetated surface is dependent on soil moisture, vegetation absorption and vegetation scattering. Vegetation scattering is normally represented by the single scattering albedo, ω, and is commonly assumed to be a time-invariant calibration parameter to achieve high ac…
Retrieval of Forest Water Potential from L-Band Vegetation Optical Depth
A retrieval methodology for forest water potential from ground-based L-band radiometry is proposed. It contains the estimation of the gravimetric and the relative water content of a forest stand and tests in situ- and model-based functions to transform these estimates into forest water potential. The retrieval is based on vegetation optical depth data from a tower-based experiment of the SMAPVEX 19–21 campaign for the period from April to October 2019 at Harvard Forest, MA, USA. In addition, comparison and validation with in situ measurements on leaf and xylem water potential as well as on leaf wetness and complex permittivity are foreseen to understand limitations and potentials of the pro…