0000000000181178
AUTHOR
Peggy O'neill
Surface Soil Moisture Retrieval Using the L-Band Synthetic Aperture Radar Onboard the Soil Moisture Active–Passive Satellite and Evaluation at Core Validation Sites
This paper evaluates the retrieval of soil moisture in the top 5-cm layer at 3-km spatial resolution using L-band dual-copolarized Soil Moisture Active–Passive (SMAP) synthetic aperture radar (SAR) data that mapped the globe every three days from mid-April to early July, 2015. Surface soil moisture retrievals using radar observations have been challenging in the past due to complicating factors of surface roughness and vegetation scattering. Here, physically based forward models of radar scattering for individual vegetation types are inverted using a time-series approach to retrieve soil moisture while correcting for the effects of static roughness and dynamic vegetation. Compared with the …
An assessment of the differences between spatial resolution and grid size for the SMAP enhanced soil moisture product over homogeneous sites
Abstract Satellite-based passive microwave remote sensing typically involves a scanning antenna that makes measurements at irregularly spaced locations. These locations can change on a day to day basis. Soil moisture products derived from satellite-based passive microwave remote sensing are usually resampled to a fixed Earth grid that facilitates their use in applications. In many cases the grid size is finer than the actual spatial resolution of the observation, and often this difference is not well understood by the user. Here, this issue was examined for the Soil Moisture Active Passive (SMAP) enhanced version of the passive-based soil moisture product, which has a grid size of 9-km and …
Validation of SMAP surface soil moisture products with core validation sites
Abstract The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well-calibrated in situ soil moisture measurements within SMAP product grid pixels for diverse conditions and locations. The estimation of the average soil moisture within the SMAP product grid pixels based on in situ measurements is more reliable when location specific calibration of the sensors has been performed and there is adequate replication over the spatial domain, with an up-scaling function based on analysis using independent estimates of the soil moisture distributio…
The SMAP mission combined active-passive soil moisture product at 9 km and 3 km spatial resolutions
Abstract The NASA Soil Moisture Active Passive (SMAP) mission was launched on January 31st, 2015. The spacecraft was to provide high-resolution (3 km and 9 km) global soil moisture estimates at regular intervals by combining for the first time L-band radiometer and radar observations. On July 7th, 2015, a component of the SMAP radar failed and the radar ceased operation. However, before this occurred the mission was able to collect and process ~2.5 months of the SMAP high-resolution active-passive soil moisture data (L2SMAP) that coincided with the Northern Hemisphere's vegetation green-up and crop growth season. In this study, we evaluate the SMAP high-resolution soil moisture product deri…
Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field
International audience; The objective of this study was to compare several approaches to soil moisture (SM) retrieval using l-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30°–60°). Based on a three year data set (2010–2012), several SM retrieval approaches developed for spaceborne miss…
The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product
Abstract Soil Moisture Active Passive (SMAP) mission of NASA was launched in January 2015. Currently, SMAP has an L-band radiometer and a defunct L-band radar with a rotating 6-m mesh reflector antenna. On July 7th, 2015, the SMAP radar malfunctioned and became inoperable. Consequently, the production of high-resolution active-passive soil moisture product got hampered, and only ~2.5 months (April 15th, 2015 to July 7th, 2015) of data remain available. Therefore, during the SMAP post-radar phase, many ways were examined to restart the high-resolution soil moisture product generation of the SMAP mission. One of the feasible approaches was to substitute the SMAP radar with other available SAR…