0000000000181428
AUTHOR
Christiane P. Koch
Time optimization and state-dependent constraints in the quantum optimal control of molecular orientation
We apply two recent generalizations of monotonically convergent optimization algorithms to the control of molecular orientation by laser fields. We show how to minimize the control duration by a step-wise optimization and maximize the field-free molecular orientation using state-dependent constraints. We discuss the physical relevance of the different results.
Training Schrödinger’s cat: quantum optimal control
It is control that turns scientific knowledge into useful technology: in physics and engineering itprovides a systematic way for driving a dynamical system from a given initial state into a desired targetstate with minimized expenditure of energy and resources. As one of the cornerstones for enabling quantumtechnologies, optimal quantum control keeps evolving and expanding into areas as diverse as quantumenhancedsensing, manipulation of single spins, photons, or atoms, optical spectroscopy, photochemistry,magnetic resonance (spectroscopy as well as medical imaging), quantum information processing and quantumsimulation. In this communication, state-of-the-art quantum control techniques are r…
Fundamental bounds on qubit reset
Qubit reset is a basic prerequisite for operating quantum devices, requiring the export of entropy. The fastest and most accurate way to reset a qubit is obtained by coupling the qubit to an ancilla on demand. Here, we derive fundamental bounds on qubit reset in terms of maximum fidelity and minimum time, assuming control over the qubit and no control over the ancilla. Using the Cartan decomposition of the Lie algebra of qubit plus two-level ancilla, we identify the types of interaction and controls for which the qubit can be purified. For these configurations, we show that a time-optimal protocol consists of purity exchange between qubit and ancilla brought into resonance, where the maximu…
Time-optimal control of the purification of a qubit in contact with a structured environment
We investigate the time-optimal control of the purification of a qubit interacting with a structured environment, consisting of a strongly coupled two-level defect in interaction with a thermal bath. On the basis of a geometric analysis, we show for weak and strong interaction strengths that the optimal control strategy corresponds to a qubit in resonance with the reservoir mode. We investigate under which conditions qubit coherence and correlation between the qubit and the environment can speed up the control process.
Training Schr\"odinger's cat: quantum optimal control
It is control that turns scientific knowledge into useful technology: in physics and engineering it provides a systematic way for driving a system from a given initial state into a desired target state with minimized expenditure of energy and resources -- as famously applied in the Apollo programme. As one of the cornerstones for enabling quantum technologies, optimal quantum control keeps evolving and expanding into areas as diverse as quantum-enhanced sensing, manipulation of single spins, photons, or atoms, optical spectroscopy, photochemistry, magnetic resonance (spectroscopy as well as medical imaging), quantum information processing and quantum simulation. --- Here state-of-the-art qu…
Comparative study of monotonically convergent optimization algorithms for the control of molecular rotation
We apply two different monotonically convergent optimization algorithms to the control of molecular rotational dynamics by laser pulses. This example represents a quantum control problem where the interaction of the system with the external field is non-linear. We test the validity and accuracy of the two methods on the key control targets of producing molecular orientation and planar delocalization at zero temperature, and maximizing permanent alignment at non-zero temperature.