0000000000181493

AUTHOR

Karina Reiss

showing 6 related works from this author

Digestive vacuole of Plasmodium falciparum released during erythrocyte rupture dually activates complement and coagulation.

2012

Abstract Severe Plasmodium falciparum malaria evolves through the interplay among capillary sequestration of parasitized erythrocytes, deregulated inflammatory responses, and hemostasis dysfunction. After rupture, each parasitized erythrocyte releases not only infective merozoites, but also the digestive vacuole (DV), a membrane-bounded organelle containing the malaria pigment hemozoin. In the present study, we report that the intact organelle, but not isolated hemozoin, dually activates the alternative complement and the intrinsic clotting pathway. Procoagulant activity is destroyed by phospholipase C treatment, indicating a critical role of phospholipid head groups exposed at the DV surfa…

HemeproteinsMalePain ThresholdErythrocytesImmunologyComplement Pathway AlternativePlasmodium falciparumVacuoleBiochemistryHemolysisMonocytesMicrobiologyHypesthesiaRats Sprague-DawleyPhagocytosisparasitic diseasesAnimalsHumansMalaria FalciparumBlood CoagulationLungbiologyPhospholipase CHemozoinDextran SulfatePlasmodium falciparumCell BiologyHematologyIntracellular Membranesbiology.organism_classificationComplement systemRatsAntibody opsonizationImmunologyVacuolesAlternative complement pathwaySpleenWaste disposalBlood
researchProduct

Author response: ADAM17-dependent signaling is required for oncogenic human papillomavirus entry platform assembly

2019

Cancer researchHuman papillomavirusBiology
researchProduct

Melittin Modulates Keratinocyte Function through P2 Receptor-dependent ADAM Activation

2012

Melittin, the major component of the bee venom, is an amphipathic, cationic peptide with a wide spectrum of biological properties that is being considered as an anti-inflammatory and anti-cancer agent. It modulates multiple cellular functions but the underlying mechanisms are not clearly understood. Here, we report that melittin activates disintegrin-like metalloproteases (ADAMs) and that downstream events likely contribute to the biological effects evoked by the peptide. Melittin stimulated the proteolysis of ADAM10 and ADAM17 substrates in human neutrophil granulocytes, endothelial cells and murine fibroblasts. In human HaCaT keratinocytes, melittin induced shedding of the adhesion molecu…

KeratinocytesCell SurvivalBlotting WesternADAM17 ProteinP2 receptorBiologyModels Biologicalcomplex mixturesBiochemistryMelittinCell LineADAM10 ProteinMicechemistry.chemical_compoundTransactivationAdenosine TriphosphateAnimalsHumansPhosphorylationExtracellular Signal-Regulated MAP KinasesReceptorMolecular BiologyCells CulturedMice KnockoutDose-Response Relationship DrugReverse Transcriptase Polymerase Chain ReactionPurinergic receptorHEK 293 cellstechnology industry and agricultureMembrane ProteinsCell BiologyFibroblastsCadherinsEmbryo MammalianMelittenCell biologyErbB ReceptorsADAM ProteinsHaCaTHEK293 CellschemistryPhosphorylationlipids (amino acids peptides and proteins)Receptors Purinergic P2X7Amyloid Precursor Protein SecretasesJournal of Biological Chemistry
researchProduct

2018

Oncogenic human papillomaviruses (HPV) are small DNA viruses that infect keratinocytes. After HPV binding to cell surface receptors, a cascade of molecular interactions mediates the infectious cellular internalization of virus particles. Aside from the virus itself, important molecular players involved in virus entry include the tetraspanin CD151 and the epidermal growth factor receptor (EGFR). To date, it is unknown how these components are coordinated in space and time. Here, we studied plasma membrane dynamics of CD151 and EGFR and the HPV16 capsid during the early phase of infection. We find that the proteinase ADAM17 activates the extracellular signal-regulated kinases (ERK1/2) pathway…

Keratinocytes0301 basic medicineCarcinogenesisvirusesEndocytic cycle610 MedizinTetraspanin610 Medical sciencesEpidermal growth factor receptorBiology (General)InternalizationPapillomaviridaemedia_commonHuman papillomavirus 16Microbiology and Infectious DiseaseADAM17General NeuroscienceQRoncogenic PapillomavirusGeneral MedicineEndocytosisCell biologyErbB ReceptorsCapsidMedicinemicrodomainsResearch ArticleHumanQH301-705.5MAP Kinase Signaling SystemSciencemedia_common.quotation_subject030106 microbiologyADAM17 ProteinTetraspanin 24BiologyGeneral Biochemistry Genetics and Molecular BiologyVirus03 medical and health sciencesCell surface receptorViral entrygrowth factorsHumansGeneral Immunology and MicrobiologyCell MembranePapillomavirus InfectionsVirionentry receptor complexCell BiologyVirus Internalizationtetraspanin030104 developmental biologybiology.proteinHeLa CellseLife
researchProduct

Unsaturated Fatty Acids Drive Disintegrin and Metalloproteinase (ADAM)-dependent Cell Adhesion, Proliferation, and Migration by Modulating Membrane F…

2011

The disintegrin-metalloproteinases ADAM10 and ADAM17 mediate the release of several cell signaling molecules and cell adhesion molecules such as vascular endothelial cadherin or L-selectin affecting endothelial permeability and leukocyte transmigration. Dysregulation of ADAM activity may contribute to the pathogenesis of vascular diseases, but the mechanisms underlying the control of ADAM functions are still incompletely understood. Atherosclerosis is characterized by lipid plaque formation and local accumulation of unsaturated free fatty acids (FFA). Here, we show that unsaturated FFA increase ADAM-mediated substrate cleavage. We demonstrate that these alterations are not due to genuine ch…

KeratinocytesMembrane FluidityADAM10Lipid BilayersVascular permeabilityBiologyADAM17 ProteinBiochemistryCapillary PermeabilityADAM10 ProteinCell MovementMembrane fluidityCell AdhesionAnimalsHumansCell adhesionMolecular BiologyCell ProliferationCell adhesion moleculeCell growthFluorescence recovery after photobleachingEndothelial CellsMembrane ProteinsCell BiologyAtherosclerosisADAM ProteinsCell biologyLipoproteins LDLADAM ProteinsHEK293 CellsFatty Acids UnsaturatedCholesterol EstersRabbitsAmyloid Precursor Protein SecretasesGranulocytes
researchProduct

Digestive vacuoles of Plasmodium falciparum are selectively phagocytosed by and impair killing function of polymorphonuclear leukocytes.

2011

AbstractSequestration of parasitized erythrocytes and dysregulation of the coagulation and complement system are hallmarks of severe Plasmodium falciparum malaria. A link between these events emerged through the discovery that the parasite digestive vacuole (DV), which is released together with infective merozoites into the bloodstream, dually activates the intrinsic clotting and alternative complement pathway. Complement attack occurs exclusively on the membrane of the DVs, and the question followed whether DVs might be marked for uptake by polymorphonuclear granulocytes (PMNs). We report that DVs are indeed rapidly phagocytosed by PMNs after schizont rupture in active human serum. Uptake …

ErythrocytesTime FactorsNeutrophilsPhagocytosisImmunologyPlasmodium falciparumVacuoleBiologyBiochemistryModels BiologicalMicrobiologySubstrate SpecificityPhagocytosisAnimalsHumansMalaria FalciparumOpsoninchemistry.chemical_classificationReactive oxygen speciesCell DeathMerozoitesPlasmodium falciparumCell BiologyHematologybiology.organism_classificationComplement systemRespiratory burstBlood Cell CountchemistryImmunologyVacuolesAlternative complement pathwayReactive Oxygen SpeciesBlood
researchProduct