0000000000181538

AUTHOR

Siegfried Horn

LOCAL-MOMENT AND ITINERANT ANTIFERROMAGNETISM IN THE HEAVY-FERMION SYSTEM CE(CU1-XNIX)2GE2

Elastic and inelastic neutron-scattering studies on the system Ce(Cu1−xNix)2Ge2 are reported. These measurements are complemented by measurements of the magnetic susceptibility, high-field magnetization, heat capacity, thermal expansion, electrical resistivity and thermopower. The results reveal an interesting T-x phase diagram consisting of two different antiferromagnetic phases for x 0.5. Further experimental evidence for different types of antiferromagnetic ordering derives from a line-shape analysis of the quasielastic neutron-scattering intensity, from magnetization and thermopower experiments.

research product

Alloying experiments on heavy fermion compounds

Abstract This paper is intended to demonstrate the usefulness of controlled alloying for the understanding of heavy-fermion physics: (1) Th-substitution for Ce in CeCu2Si2 emphasizes the dominating role of the dopant-induced strain fields in generating incoherent scattering and pair breaking, (2) replacement of Cu by Ni in Ce(Cu1-xNix)2Ge2 leads to phenomena which are interpreted as derived from a transition between local-moment and itinerant heavy-fermion magnetism, and (3) increasing Cu concentration in UCu4+xAl8-x is accompanied by an antiferromagnetic to nonmagnetic transition near xcr = 1.5 similar to what has been found before for several Ce-based systems. A heavy Fermi-liquid phase w…

research product

Electronic structure of the spin-12quantum magnet TiOCl

We have studied the electronic structure of the spin-$1∕2$ quantum magnet TiOCl by polarization-dependent momentum-resolved photoelectron spectroscopy. From that, we confirm the quasi-one-dimensional nature of the electronic structure along the crystallographic $b$ axis and find no evidence for sizable phonon-induced orbital fluctuations as the origin for the noncanonical phenomenology of the spin-Peierls transition in this compound. A comparison of the experimental data to our own $\mathrm{LDA}+\mathrm{U}$ and Hubbard model calculations reveals a striking lack of understanding regarding the quasi-one-dimensional electron dispersions in the normal state of this compound.

research product

Alloying-induced transition from local-moment to itinerant heavy fermion magnetism in Ce(Cu1−xNix)2Ge2

Abstract A monotonous increase of the Kondo temperature in Ce(Cu1−xNix)2Ge2 from 7 (x = 0) to 30 K (x = 1) is accompanied by drastic changes of ground state properties: for x⩽0.2, a modulated magnetic structure (q01 = (0.28, 0.28, 0.54)) involving Kondo-reduced local Ce moments ( μ s = 0.74μ B Ce for x = 0) forms below TN1(x). TN1 = 4. 1 K for CeCu2Ge2 is strongly depressed upon increasing x. At x ≲ 0.2, a different modulation develops below TN2(x) which becomes maximum (≃4 K) for x = 0.5. Since this is characterized by a very small value of q02 (=(0, 0, 0.13) at x = 0.5) and a gradually decreasing ordered moment (reaching μs ≲ 0.2μB/Ce for x ⩾0.65), we ascribe it to “heavy fermion band mag…

research product