0000000000182174

AUTHOR

J. Santeri Puranen

showing 3 related works from this author

alpha 11beta 1 integrin recognizes the GFOGER sequence in interstitial collagens.

2002

The integrins alpha(1)beta(1), alpha(2)beta(1), alpha(10)beta(1), and alpha(11)beta(1) are referred to as a collagen receptor subgroup of the integrin family. Recently, both alpha(1)beta(1) and alpha(2)beta(1) integrins have been shown to recognize triple-helical GFOGER (where single letter amino acid nomenclature is used, O = hydroxyproline) or GFOGER-like motifs found in collagens, despite their distinct binding specificity for various collagen subtypes. In the present study we have investigated the mechanism whereby the latest member in the integrin family, alpha(11)beta(1), recognizes collagens using C2C12 cells transfected with alpha(11) cDNA and the bacterially expressed recombinant a…

Models MolecularIntegrinsDNA ComplementaryReceptors CollagenPhenylalanineIntegrinAmino Acid MotifsPlasma protein bindingBiochemistrylaw.inventionCollagen receptorMiceProtein structurelawCell AdhesionAnimalsHumansMagnesiumMolecular BiologyBinding selectivityCells Culturedchemistry.chemical_classificationbiologyDose-Response Relationship DrugCell BiologyPrecipitin TestsRecombinant ProteinsAmino acidProtein Structure TertiaryKineticschemistryBiochemistrybiology.proteinRecombinant DNACalciumCollagenPeptidesType I collagenProtein BindingThe Journal of biological chemistry
researchProduct

Jararhagin-derived RKKH Peptides Induce Structural Changes in α1I Domain of Human Integrin α1β1

2003

Integrin alpha(1)beta(1) is one of four collagen-binding integrins in humans. Collagens bind to the alphaI domain and in the case of alpha(2)I collagen binding is competitively inhibited by peptides containing the RKKH sequence and derived from the metalloproteinase jararhagin of snake venom from Bothrops jararaca. In alpha(2)I, these peptides bind near the metal ion-dependent adhesion site (MIDAS), where a collagen (I)-like peptide is known to bind; magnesium is required for binding. Published structures of the ligand-bound "open" conformation of alpha(2)I differs significantly from the "closed" conformation seen in the structure of apo-alpha(2)I near MIDAS. Here we show that two peptides,…

Models MolecularProtein ConformationStereochemistryIntegrinAlpha (ethology)PeptideCrystallography X-RayBinding CompetitiveBiochemistryCollagen Type IProtein Structure SecondaryIntegrin alpha1beta1Protein structureCrotalid VenomsHumansMagnesiumAmino Acid SequenceBinding siteMolecular BiologyPeptide sequenceFluorescent Dyeschemistry.chemical_classificationBinding SitesCalorimetry Differential ScanningMolecular StructurebiologyMetalloendopeptidasesCell BiologyPeptide FragmentsRecombinant ProteinsSpectrometry FluorescencechemistryJararhaginHelixbiology.proteinCrystallizationJournal of Biological Chemistry
researchProduct

Molecular mechanism of α2β1 integrin interaction with human echovirus 1

2009

Conformational activation increases the affinity of integrins to their ligands. On ligand binding, further changes in integrin conformation elicit cellular signalling. Unlike any of the natural ligands of alpha2beta1 integrin, human echovirus 1 (EV1) seemed to bind more avidly a 'closed' than an activated 'open' form of the alpha2I domain. Furthermore, a mutation E336A in the alpha2 subunit, which inactivated alpha2beta1 as a collagen receptor, enhanced alpha2beta1 binding to EV1. Thus, EV1 seems to recognize an inactive integrin, and not even the virus binding could trigger the conformational activation of alpha2beta1. This was supported by the fact that the integrin clustering by EV1 did …

Models MolecularProtein Conformationmedia_common.quotation_subjectIntegrinCHO CellsIn Vitro TechniquesBiologyp38 Mitogen-Activated Protein KinasesCD49cArticleGeneral Biochemistry Genetics and Molecular BiologyCell LineCollagen receptorCricetulusCricetinaeChlorocebus aethiopsAnimalsHumansBinding siteInternalizationMolecular Biologymedia_commonBinding SitesGeneral Immunology and MicrobiologyGeneral NeuroscienceRecombinant ProteinsEnterovirus B HumanProtein Structure TertiaryCell biologyAmino Acid SubstitutionIntegrin alpha MBiochemistryMutagenesis Site-Directedbiology.proteinReceptors VirusIntegrin beta 6Integrin alpha2beta1Signal transductionSignal TransductionThe EMBO Journal
researchProduct