0000000000182354

AUTHOR

Stephan Rahm

Observed versus simulated mountain waves over Scandinavia – improvement of vertical winds, energy and momentum fluxes by enhanced model resolution?

Abstract. Two mountain wave events, which occurred over northern Scandinavia in December 2013 are analysed by means of airborne observations and global and mesoscale numerical simulations with horizontal mesh sizes of 16, 7.2, 2.4 and 0.8 km. During both events westerly cross-mountain flow induced upward-propagating mountain waves with different wave characteristics due to differing atmospheric background conditions. While wave breaking occurred at altitudes between 25 and 30 km during the first event due to weak stratospheric winds, waves propagated to altitudes above 30 km and interfacial waves formed in the troposphere at a stratospheric intrusion layer during the second event. Global an…

research product

Observed versus simulated mountain waves over Scandinavia – improvement by enhanced model resolution?

Abstract. Two mountain wave events, which occured over northern Scandinavia in December 2013 are analysed by means of airborne observations and global and mesoscale numerical simulations with horizontal mesh sizes of 16 km, 7.2 km, 2.4 km and 0.8 km. During both events westerly cross-mountain flow induced upward propagating waves in the troposphere and stratosphere and trapped waves in the lee of the mountains. Despite similar forcing conditions gravity wave breaking occured during the first event at altitudes between 25 km to 30 km due to weak stratospheric background winds, while waves propagated to altitudes above 30 km during the second event. In the lower troposphere trapped lee waves …

research product