0000000000184276

AUTHOR

Ulrich Ratzinger

showing 6 related works from this author

Chapter 7 HITRAP: A Facility at GSI for Highly Charged Ions

2008

Abstract An overview and status report of the new trapping facility for highly charged ions at the Gesellschaft fur Schwerionenforschung is presented. The construction of this facility started in 2005 and is expected to be completed in 2008. Once operational, highly charged ions will be loaded from the experimental storage ring ESR into the HITRAP facility, where they are decelerated and cooled. The kinetic energy of the initially fast ions is reduced by more than fourteen orders of magnitude and their thermal energy is cooled to cryogenic temperatures. The cold ions are then delivered to a broad range of atomic physics experiments.

Range (particle radiation)business.industryOrders of magnitude (temperature)ChemistryTrappingStatus reportKinetic energyIonNuclear physicsPhysics::Atomic PhysicsAtomic physicsbusinessThermal energyStorage ring
researchProduct

HITRAP – a facility for experiments on heavy highly charged ions and on antiprotons

2009

HITRAP is a facility for very slow highly-charged heavy ions at GSI. HITRAP uses the GSI relativistic ion beams, the Experimental Storage Ring ESR for electron cooling and deceleration to 4 MeV/u, and consists of a combination of an interdigital H-mode (IH) structure with a radiofrequency quadrupole structure for further deceleration to 6 keV/u, and a Penning trap for accumulation and cooling to low temperatures. Finally, ion beams with low emittance will be delivered to a large variety of atomic and nuclear physics experiments. Presently, HITRAP is in the commissioning phase. The deceleration of heavy-ion beam from the ESR storage ring to an energy of 500 keV/u with the IH structure has be…

PhysicsHistoryLow emittancePenning trapComputer Science ApplicationsEducationIonlaw.inventionNuclear physicslawAntiprotonQuadrupolePhysics::Accelerator PhysicsPhysics::Atomic PhysicsAtomic physicsNuclear ExperimentBeam (structure)Storage ringElectron coolingJournal of Physics: Conference Series
researchProduct

Investigation of the Li9+H2→Li8+t reaction at REX-ISOLDE

2006

The one-neutron transfer reaction Li-9 + H-2 -> Li-8 + t has been investigated in an inverse kinematics experiment by bombarding a deuterated polypropylene target with a 2.36 MeV/u Li-9 beam from the post-accelerator REX-ISOLDE at CERN. Excitation energies in Li-8 as well as angular distributions of the tritons were obtained and spectroscopic factors deduced. (c) 2006 Elsevier B.V. All rights reserved.

Nuclear reactionElastic scatteringPhysicsNuclear and High Energy PhysicsLight nucleusAngular distributionDeuteriumNuclear TheoryPhysics::Accelerator PhysicsAtomic physicsNuclear ExperimentBeam (structure)ExcitationPhysics Letters B
researchProduct

Accelerated radioactive beams from REX-ISOLDE

2003

In 2001 the linear accelerator of the Radioactive beam EXperiment (REX-ISOLDE) delivered for the first time accelerated radioactive ion beams, at a beam energy of 2 MeV/u. REX-ISOLDE uses the method of charge-state breeding, in order to enhance the charge state of the ions before injection into the LINAC. Radioactive singly-charged ions from the on-line mass separator ISOLDE are first accumulated in a Penning trap, then charge bred to an A/q < 4.5 in an electron beam ion source (EBIS) and finally accelerated in a LINAC from 5 keV/u to energies between 0.8 and 2.2 MeV/u. Dedicated measurements with REXTRAP, the transfer line and the EBIS have been carried out in conjunction with the first co…

PhysicsNuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsDetectorPenning trapParticle detectorIon sourceLinear particle acceleratorSemiconductor detectorNuclear physicsPhysics::Accelerator PhysicsNeutronAtomic physicsNuclear ExperimentInstrumentationBeam (structure)
researchProduct

The REX-ISOLDE project

2002

REX-ISOLDE is a pilot experiment at ISOLDE/CERN to study the structure of neutron-rich nuclei (N=20, N=28) with post-accelerated radioactive ion beams (1). Therefore radioactive ions with charge state 1+, which are delivered by the online mass separator ISOLDE, are accelerated up to 2.2 MeV/u by means of a new concept. The radioactive ions are first accumulated in a Penning trap, then charge breeded to a charge-to-mass ratio of 1/4.5 in an Electron Beam Ion Source (EBIS) and finally accelerated. The LINAC consists of three components, namely a Radio Frequency Quadrupole (RFQ) accelerator, which accelerates the ions from 5 to 300 keV/u, an interdigital H-type structure (IH) with a final ener…

PhysicsLarge Hadron ColliderMass-to-charge ratioNuclear TheoryParticle acceleratorCoulomb excitationPenning trapLinear particle acceleratorIon sourceIonlaw.inventionNuclear physicsRadio-frequency quadrupolelawCathode rayPhysics::Accelerator PhysicsNeutronBeam emittanceAtomic physicsNuclear ExperimentProceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167)
researchProduct

Low energy reactions with radioactive ions at REX-ISOLDE-the 9Li + 2H case

2005

19 pages, 12 figures, 2 tables.-- PACS nrs.: 25.60.-t; 25.45.-z; 27.20.+n.-- et al. ISOLDE Collaborattion and REX-ISOLDE Collaboration.

PhysicsNuclear and High Energy PhysicsExcitation energyC3D6 targetRex-Isolde post-acceleratorIonNuclear physicsLow energyDeduced reaction channelsDeuteriumReaction radioactiveDSSSD detectorAtomic physicsBeam (structure)Radioactive beam
researchProduct