0000000000184387

AUTHOR

Oliver Forstner

Isobar suppression in AMS using laser photodetachment

Abstract We are investigating the possibility of using laser photodetachment of negative atomic and molecular ions as an additional isobaric selection filter in accelerator mass spectrometry. The aim of this study is to find a possibility to further improve the detection limit for long-lived heavy radionuclides at AMS facilities. We will focus on the astrophysical relevant radionuclide 182Hf, which is one of the isotopes measured with the 3 MV tandem AMS facility VERA (Vienna Environmental Research Accelerator) at the University of Vienna. Laser-induced isobar suppression is also of importance for radioactive-beam facilities. The present detection limit for measuring the isotope ratio 182Hf…

research product

The electron affinity of astatine

One of the most important properties influencing the chemical behavior of an element is the electron affinity (EA). Among the remaining elements with unknown EA is astatine, where one of its isotopes, 211At, is remarkably well suited for targeted radionuclide therapy of cancer. With the At− anion being involved in many aspects of current astatine labeling protocols, the knowledge of the electron affinity of this element is of prime importance. Here we report the measured value of the EA of astatine to be 2.41578(7) eV. This result is compared to state-of-the-art relativistic quantum mechanical calculations that incorporate both the Breit and the quantum electrodynamics (QED) corrections and…

research product

Depletion of the excited state population in negative ions using laser photodetachment in a gas-filled RF quadrupole ion guide

International audience; The depopulation of excited states in beams of negatively charged carbon and silicon ions was demonstrated using collisional detachment and laser photodetachment in a radio frequency quadrupole ion guide filled with helium. The high lying, loosely bound 2 D excited state in C − was completely depleted through collisional detachment alone, which was quantitatively determined within 6%. For Si − the combined signal from the population in the 2 P and 2 D excited states was only partly depleted through collisions in the cooler. The loosely bound 2 P state was likely to be completely depopulated and the more tightly bound 2 D state was partly depopulated through collision…

research product

Feasibility of photodetachment isobar suppression of WF with respect to HfF

Abstract The feasibility of using laser photodetachment as a means for isobar suppression in accelerator mass spectrometry has been investigated for the special case of HfF 5 − /WF 5 − . A method for absolute photodetachment cross section measurements was applied and the cross sections of tungsten pentafluoride and hafnium pentafluoride negative ions were measured. The measurements indicate that the photodetachment cross section for WF 5 − is at least 100 times larger than for HfF 5 − at the wavelength of the fourth harmonic of the Nd:YAG laser at 266 nm. The absolute cross section for WF 5 − at this photon energy was found to be (2.8 ± 0.3) × 10 −18  cm 2 , while an upper limit of 2 × 10 −…

research product

Laser photodetachment of radioactive $^{128}$I$^−$

International audience; The first experimental investigation of the electron affinity (EA) of a radioactive isotope has been conducted at the CERN-ISOLDE radioactive ion beam facility. The EA of the radioactive iodine isotope (128)I (t (1/2) = 25 min) was determined to be 3.059 052(38) eV. The experiment was conducted using the newly developed Gothenburg ANion Detector for Affinity measurements by Laser PHotodetachment (GANDALPH) apparatus, connected to a CERN-ISOLDE experimental beamline. (128)I was produced in fission induced by 1.4 GeV protons striking a thorium/tantalum foil target and then extracted as singly charged negative ions at a beam energy of 20 keV. Laser photodetachment of th…

research product