0000000000185417
AUTHOR
P. Thörle
A compact apparatus for mass selective resonance ionization spectroscopy in a buffer gas cell
Abstract An ultra-sensitive laser spectroscopic method for the investigation of transuranium nuclides has been developed based on resonance ionization in an argon buffer gas cell. This method has been combined with ion-guide extraction and mass selective direct detection of the resonantly ionized atoms. Using argon as a buffer gas, recoils of fusion reactions can be thermalized even at low pressure. The differential pumping system consists of only one roots pump and two turbo molecular pumps. The set-up has been tested with 243 Am evaporated from a filament located inside the optical gas cell. Resonance ionization is performed using a two-step excitation with an excimer-dye-laser combinatio…
First Aqueous Chemistry with Seaborgium (Element 106)
Cross section limits for theCm248(Mg25,4n−5n)Hs268,269reactions
We report on an attempt to produce and detect $^{268}\mathrm{Hs}$ and $^{269}\mathrm{Hs}$ in the nuclear fusion reaction $^{25}\mathrm{Mg}+^{248}\mathrm{Cm}$ using the gas phase chemistry apparatus COMPACT. No decay chains attributable to the decay of hassium isotopes were observed during the course of this experiment. From the nonobservation of $^{269}\mathrm{Hs}$ we derive a cross section limit of 0.4 pb (63% confidence limit) for the reaction $^{248}\mathrm{Cm}(^{25}\mathrm{Mg},4n)^{269}\mathrm{Hs}$ at a center-of-target beam energy of 140 MeV. The evaluated cross section limit for the $^{248}\mathrm{Cm}(^{25}\mathrm{Mg},5n)^{268}\mathrm{Hs}$ reaction depends on the assumed half-life of …
First Observation of Atomic Levels for the Element Fermium (Z=100)
The atomic level structure of the element fermium was investigated for the first time using a sample of $2.7\ifmmode\times\else\texttimes\fi{}{10}^{10}$ atoms of the isotope $^{255}\mathrm{F}\mathrm{m}$ with a half-life of 20.1 h. The atoms were evaporated from a filament and stored in the argon buffer gas of an optical cell. Atomic levels were sought by the method of resonance ionization spectroscopy using an excimer-dye-laser combination. Two atomic levels were found at wave numbers $(25\text{ }099.8\ifmmode\pm\else\textpm\fi{}0.2)$ and $(25\text{ }111.8\ifmmode\pm\else\textpm\fi{}0.2)\text{ }\text{ }{\mathrm{c}\mathrm{m}}^{\ensuremath{-}1}$. Partial transition rates to the $5{f}^{12}7{s}…
Radiation detected resonance ionization spectroscopy on208Tl and242fAm
An ultra-sensitive laser spectroscopic method has been developed for the hyperfine spectroscopy of short-lived isotopes far off stability produced by heavy ion induced nuclear reactions at very weak intensity (> 1/s). It is based on resonance ionization spectroscopy in a buffer gas cell with radiation detection of the ionization process (RADRIS). As a first on-line application of RADRIS optical spectroscopy at242fAm fission isomers is in progress at the low target production rate of 10/s. The resonance ionization has been performed in two steps utilizing an excimer dye laser combination with a repetition rate of 300 Hz. The first resonant step proceeds through terms which correspond to wave…
Miss Piggy, a californium-252 fission fragment source as a generator of short-lived radionuclides
Abstract Carrier-free short-lived nuclides are employed in many different fields of modern nuclear chemistry. The two main production strategies are either thermal neutron-induced fission of 235U or 239Pu at nuclear reactors or spallation neutron sources or charged particle-induced nuclear reactions at accelerator facilities. An alternative method is to use a spontaneously fissioning nuclide. A facility applying this technique (“Miss Piggy”) was built at the University of Berne (Switzerland). Californium-252 (252Cf), which has a 3% fission branch and a half-life of 2.645 a, is used for the production of short-lived fission products that are stopped in an adjacent recoil chamber. Short-lived…
First Determination of the Ionization Potential of Actinium and First Observation of Optical Transitions in Ferminm
For the determination of the first ionization potential of actinium, 227Ac was electrodeposited on a Ta backing and covered with ~1 μm Zr. From this filament, Ac atoms were evaporated at ≥ 1250 °C. By resonant excitation with UV light of 388.67 nm and subsequent excitation with light of ca. 568 nm, Ac was ionized in an external electrical field. By determining the ionization thresholds as a function of the electrical field strength and by extrapolation to zero field strength, the first ionization potential of 43398(3) cm−1 = 5.3807(3) eV was measured.About 1 ng of 255Fm, half life 20.1 h, was prepared at ORNL by milking from 255Es produced in the High Flux Isotope Reactor and shipped to Mai…
Resonance ionization spectroscopy of fermium (Z=100)
Laser spectroscopy has been applied for the first time to measure resonant transition frequencies of fermium (Zs 100). A number of 2.7=10 atoms was electrodeposited on a Ta filament and covered with a 1 mm Ti layer. Fm 10
Preparation of targets for the gas-filled recoil separator TASCA by electrochemical deposition and design of the TASCA target wheel assembly
Abstract The Transactinide Separator and Chemistry Apparatus (TASCA) is a recoil separator with maximized transmission designed for performing advanced chemical studies as well as nuclear reaction and structure investigations of the transactinide elements ( Z >103) on a one-atom-at-a-time basis. TASCA will provide a very clean transactinide fraction with negligible contamination of lighter elements from nuclear side reactions in the target. For TASCA a new target chamber was designed and built at GSI including the rotating target wheel assembly ARTESIA for beam intensities up to 2 μA (particle). For the production of longer-lived isotopes of neutron-rich heavier actinide and transactinide e…
Chemical investigation of hassium (element 108).
The periodic table provides a classification of the chemical properties of the elements. But for the heaviest elements, the transactinides, this role of the periodic table reaches its limits because increasingly strong relativistic effects on the valence electron shells can induce deviations from known trends in chemical properties. In the case of the first two transactinides, elements 104 and 105, relativistic effects do indeed influence their chemical properties, whereas elements 106 and 107 both behave as expected from their position within the periodic table. Here we report the chemical separation and characterization of only seven detected atoms of element 108 (hassium, Hs), which were…
Attempts to chemically investigate element 112
Summary Two experiments aiming at the chemical investigation of element 112 produced in the heavy ion induced nuclear fusion reaction of 48Ca with 238U were performed at the Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany. Both experiments were designed to determine the adsorption enthalpy of element 112 on a gold surface using a thermochromatography setup. The temperature range covered in the thermochromatography experiments allowed the adsorption of Hg at about 35 °C and of Rn at about -180 °C. Reports from the Flerov Laboratory for Nuclear Reactions (FLNR), Dubna, Russia claim production of a 5-min spontaneous fission (SF) activity assigned to 283112 for the 238U(48Ca,3n)…
Preparation of targets by electrodeposition for heavy element studies
Abstract For heavy element studies at GSI, lanthanide and actinide targets have been prepared by molecular plating. The deposition occurs from an isopropanolic solution at 1000–1200 V with current densities of a few mA/cm 2 . Several lanthanide targets have been prepared for test experiments. With nat Gd deposited on a 10 μm thick Be backing foil a target density of 1100 μg/cm 2 could be achieved. Gd-targets were used for the production of α-emitting isotopes of Os, the homologue of hassium (Hs; Z =108), in order to develop a chemical separation procedure for Hs. 248 Cm targets with densities up to 730 μg/cm 2 have been produced for recent experiments to investigate the chemical behaviour o…
Doubly Magic NucleusHs162108270
Theoretical calculations predict $^{270}\mathrm{Hs}$ ($Z=108$, $N=162$) to be a doubly magic deformed nucleus, decaying mainly by $\ensuremath{\alpha}$-particle emission. In this work, based on a rapid chemical isolation of Hs isotopes produced in the $^{26}\mathrm{Mg}+^{248}\mathrm{Cm}$ reaction, we observed 15 genetically linked nuclear decay chains. Four chains were attributed to the new nuclide $^{270}\mathrm{Hs}$, which decays by $\ensuremath{\alpha}$-particle emission with ${Q}_{\ensuremath{\alpha}}=9.02\ifmmode\pm\else\textpm\fi{}0.03\text{ }\text{ }\mathrm{MeV}$ to $^{266}\mathrm{Sg}$ which undergoes spontaneous fission with a half-life of ${444}_{\ensuremath{-}148}^{+444}\text{ }\t…
Isotope shift and hyperfine structure measurements at the242f Am fission isomer
Istope shift and hyperfine structure measurements have been performed for the242fAm fission isomer with target production rates of only a few per second. The method is based on resonance ionization spectroscopy (RIS) in a buffer gas cell with radioactive decay detection of the ionization process (RADRIS). A relative isotope shift ratioX exp=IS242f,241/ IS243,241=41.7±0.9 has been measured for the 500.02 nm transition corresponding to a nuclear parameter Λ242f,241=5.4±0.3 fm2. The analysis of the quadrupole moment based on the deformed Fermi-model of the nuclear charge distribution including second order corrections results inQ 20=38.2 ±1.4( −0.8 +0.4 )model eb. The measurement of the hyperf…
Fluoride complexation of rutherfordium (Rf, element 104)
The fluoride complexation of the group-4 elements Zr, Hf and Rf, and of the pseudo-homolog Th, has been investigated in mixed HNO3/HF solutions by studying Kd values on both cation exchange resins (CIX) and anion exchange resins (AIX) using the automated rapid chemistry apparatus ARCA. On the CIX, the four elements are strongly retained as cations below 10-3M HF. For Zr and Hf, the decrease of the Kd values due to the formation of fluoride complexes occurs between 10-3M HF and 10-2M HF. For Rf and Th, this decrease is observed at one order of magnitude higher HF concentrations. On the AIX, for Zr and Hf, a rise of the Kd values due to the formation of anionic fluoride complexes is observed …
Observation of the3nEvaporation Channel in the Complete Hot-Fusion ReactionMg26+Cm248Leading to the New Superheavy NuclideHs271
The analysis of a large body of heavy ion fusion reaction data with medium-heavy projectiles ($6\ensuremath{\le}Z\ensuremath{\le}18$) and actinide targets suggests a disappearance of the $3n$ exit channel with increasing atomic number of the projectile. Here, we report a measurement of the excitation function of the reaction $^{248}\mathrm{Cm}(^{26}\mathrm{Mg},xn)^{274\mathrm{\text{\ensuremath{-}}}x}\mathrm{Hs}$ and the observation of the new nuclide $^{271}\mathrm{Hs}$ produced in the $3n$ evaporation channel at a beam energy well below the Bass fusion barrier with a cross section comparable to the maxima of the $4n$ and $5n$ channels. This indicates the possible discovery of new neutron-r…
Determination of the first ionization potential of einsteinium by resonance ionization mass spectroscopy (RIMS)
Abstract The first ionization potential of einsteinium (IP Es ) was determined by resonance ionization mass spectroscopy (RIMS) using samples with ≤10 12 atoms of 254 Es ( T 1/2 =276 days). This method is based on the measurement of photoionization thresholds as a function of applied electric field strength, followed by extrapolation to zero field strength to yield IP Es . An atomic beam of Es was created by heating a filament on which einsteinium was electrodeposited from an aqueous solution onto a tantalum backing and covered with titanium metal. Es atoms were ionized via a three-step excitation scheme, and the ions mass-selectively detected in a time-of-flight (TOF) mass spectrometer. Th…
The application of neutron activation analysis, scanning electron microscope, and radiographic imaging for the characterization of electrochemically deposited layers of lanthanide and actinide elements
Lanthanide and actinide targets are prepared at the University of Mainz by molecular plating, an electrochemical deposition from an organic solvent, for heavy-ion reaction studies at GSI. To acquire information about deposition yield, target thickness, and target homogeneity, the following analysis methods are applied. With neutron activation analysis (NAA) the deposition yield and the average thickness of the deposited material is determined. We report on the analytical procedure of NAA performed subsequent to the molecular plating process. Scanning electron microscope (SEM) is used to determine the morphology of the target surfaces. In combination with energy dispersive X-ray spectrometer…