0000000000185541
AUTHOR
P. Jessberger
Evolution of CO2, SO2, HCl, and HNO3in the volcanic plumes from Etna
The volcanic plumes from degassing Etna (Italy) were extensively probed with instruments onboard the Deutsches Zentrum fur Luft- und Raumfahrt research aircraft Falcon during the contrail, volcano, and cirrus experiment CONCERT on 29/30 September 2011. Up to 10.4 ppmv SO2 and 0.3 ppmv HCl were detected with the atmospheric chemical ionization mass spectrometer AIMS at 3.1 km altitude and 20 km distance to the summit. HNO3 is the dominant reactive nitrogen component in the plumes. Linking aircraft and ground-based observations by Hybrid Single-Particle Lagrangian Integrated Trajectory dispersion modeling, we identify two crater plumes with different compositions primarily injected by the Boc…
In-situ observations of young contrails – overview and selected results from the CONCERT campaign
Lineshaped contrails were detected with the research aircraft Falcon during the CONCERT – CONtrail and Cirrus ExpeRimenT – campaign in October/November 2008. The Falcon was equipped with a set of instruments to measure the particle size distribution, shape, extinction and chemical composition as well as trace gas mixing ratios of sulfur dioxide (SO<sub>2</sub>), reactive nitrogen and halogen species (NO, NO<sub>y</sub>, HNO<sub>3</sub>, HONO, HCl), ozone (O<sub>3</sub>) and carbon monoxide (CO). During 12 mission flights over Europe, numerous contrails, cirrus clouds and a volcanic aerosol layer were probed at altitudes between 8.5 and 11.6 km…
The evolution of microphysical and optical properties of an A380 contrail in the vortex phase
A contrail from a large-body A380 aircraft at cruise in the humid upper troposphere has been probed with in-situ instruments onboard the DLR research aircraft Falcon. The contrail was sampled during 700 s measurement time at contrail ages of about 1–4 min. The contrail was in the vortex regime during which the primary wake vortices were sinking 270 m below the A380 flight level while the secondary wake remained above. Contrail properties were sampled separately in the primary wake at 90 and 115 s contrail age and nearly continously in the secondary wake at contrail ages from 70 s to 220 s. The scattering phase functions of the contrail particles were measured with a polar nephelometer. The …
Extinction and optical depth of contrails
[1] One factor limiting the understanding of the climate impact from contrails and aircraft induced cloud modifications is the accurate determination of their optical depth. To this end, 14 contrails were sampled for 2756 s with instruments onboard the research aircraft Falcon during the CONCERT (CONtrail and Cirrus ExpeRimenT) campaign in November 2008. The young (<10 min old) contrails were produced by 9 commercial aircraft with weights of 47 to 508 t, among them the largest operating passenger aircraft, the Airbus A380. The contrails were observed at temperatures between 214 and 224 K and altitudes between 8.8 and 11.1 km. The measured mean in-contrail relative humidity with respect to i…