0000000000185590

AUTHOR

T. Glasmacher

New developments on the recoil distance doppler-shift method

Absolute transition probabilities are fundamental observables for nuclear structure. The recoil-distance-Doppler-shift (RDDS) technique, also called plunger technique, is a well established tool for the determination of these important experimental quantities via the measurement of lifetimes of excited nuclear states. Nowadays nuclear structure investigations are concentrated on exotic nuclei which are often produced with extremely small cross sections or with very low beam intensities. In order to use the RDDS technique also for the investigation of very exotic nuclei this method has to be adapted to the specific needs of these special reactions. This article gives an overview on recent RD…

research product

New experimental efforts along the rp-process path

The level structure just above the proton threshold of the nucleus 30S has been studied using the neutron removal process on fast radioactive beams at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. In this work we provide a description of the experimental setup. The present status of the analysis is also discussed.

research product

Evolution of collectivity in the78Ni region: Coulomb excitation of74Ni at intermediate energies.

The study of the collective properties of nuclear excitations far from stability provides information about the shell structure at extreme conditions. Spectroscopic ob- servables such as the energy or the transition probabilities of the lowest states, in nuclei with large neutron excess, allow to probe the density and isospin dependence of the ef- fective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Emblematic is the case of the evolution of the Ni isotopic chain where several features showed up moving from the most neutron rich stable isotope ( 64 Ni) towards the 78 Ni nucleus where the large neu…

research product

Improving the nuclear physics input along the rp-process path

The level structure of 30 S was studied at the NSCL by using neutron removal reactions with a radioactive 31 S beam. The γ -decay from excited states in 30 S was measured in a Ge-detector array. The results discussed for this work will reduce the uncertainties in the determination of the astrophysical 29 P(p, γ ) 30 S reaction rate under rp -process conditions.

research product

Nucleosynthesis of proton-rich nuclei. Experimental results on the rp-process

Experience NSCL; International audience; We report in this study the nuclear properties of proton-rich isotopes located along the rp-process path. The experiments have recently been performed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The level properties above the proton separation energy of the nuclei 30S, 36K and 37Ca were measured with precision of < 10 keV. This will allow a reduction in the determination of the astrophysical (p, ) reaction rate under rp-process conditions.

research product