0000000000185714

AUTHOR

Rando Saar

Elasticity and yield strength of pentagonal silver nanowires: In situ bending tests

This paper reports in situ mechanical characterization of silver nanowires (Ag NWs) inside a scanning electron microscope using a cantilevered beam bending technique. Measurements consisted in controlled bending of a cantilevered NW by the tip of an atomic force microscope glued to the force sensor. Relatively high degree of elasticity followed by either plastic deformation or fracture was observed in bending experiments. Experimental data were numerically fitted into the model based on the elastic beam theory and values of Young modulus and yield strength were extracted. Measurements were performed on twenty Ag NWs with diameters from 76 nm to 211 nm. Average Young modulus and yield streng…

research product

Electron beam induced growth of silver nanowhiskers

Abstract In this paper we report an electron beam induced rapid (up to several tens of nm/s) growth of silver nanowhiskers from silver nanowire networks coated with TiO 2 by sol–gel method. Different growth conditions are tested and it is demonstrated that growth is optimal for samples with the film thickness in the range 50–200 nm and previously annealed at 400 °C for 5–10 min. Growth mechanism is attributed to cooperative effect of several factors including diffusion of Ag into TiO 2 matrix during annealing, electromigration of Ag atoms caused by strong electric field, and presence of mechanical stresses at interfaces enhanced by thermal expansions due to local heating under e-beam illumi…

research product

Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers

Abstract We investigate the applicability of alumina nanofibers as a potential reinforcement material in ceramic matrix compounds by comparing the mechanical properties of individual nanofibers before and after annealing at 1400 °C. Mechanical testing is performed inside a scanning electron microscope (SEM), which enables observation in real time of the deformation and fracture of the fibers under loading, thereby providing a close-up inspection of the freshly fractured area in vacuum. Improvement of both the Young's modulus and the breaking strength for annealed nanofibers is demonstrated. Mechanical testing is supplemented with the structural characterization of the fibers before and afte…

research product

Shape restoration effect in Ag-SiO2 core-shell nanowires.

The combination of two different materials in a single composite core–shell heterostructure can lead to improved or even completely novel properties. In this work we demonstrate the enhancement of the mechanical properties of silver (Ag) nanowires (NW) achieved by coating them with a silica (SiO2) shell. In situ scanning electron microscope (SEM) nanomechanical tests of Ag–SiO2 core–shell nanowires reveal an improved fracture resistance and an electron-beam induced shape restoration effect. In addition, control experiments are conducted separately on uncoated Ag NWs and on empty SiO2 shells in order to gain deeper insight into the peculiar properties of Ag–SiO2. Test conditions are simulate…

research product

Mechanical characterization of TiO2 nanofibers produced by different electrospinning techniques

Abstract In this work TiO2 nanofibers produced by needle and needleless electrospinning processes from the same precursor were characterized and compared using Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and in situ SEM nanomechanical testing. Phase composition, morphology, Young's modulus and bending strength values were found. Weibull statistics was used to evaluate and compare uniformity of mechanical properties of nanofibers produced by two different methods. It is shown that both methods yield nanofibers with very similar properties.

research product