0000000000185775
AUTHOR
Michael Kosmykov
Stability analysis of logistics networks with time-delays
Logistics network represents a complex system where different elements that are logistic locations interact with each other. This interaction contains delays caused by time needed for delivery of the material. In this paper, we study local input-to-state stability of such logistics networks. Their behaviour is described by a functional differential equation with a constant time-delay. An appropriate Lyapunov–Razumikhin function and the small gain condition are utilized to establish some conditions for stability analysis of the network under consideration. Our stability conditions for the logistics network are based on the information about the interconnection properties between logistic loc…
Application of the LISS Lyapunov-Krasovskii small-gain theorem to autonomously controlled production networks with time-delays
Accepted version of a paper published by IEEE. (c) 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works Published version: http://dx.doi.org/10.1109/SYSTOL.2010.5676085 In this paper we consider general autonomously controlled production networks. A production network consists of geographically distributed plants, which are connected by transport routes such that transportation times (time-delays) …
A Lyapunov–Razumikhin approach for stability analysis of logistics networks with time-delays
Logistics network represents a complex system where different elements that are logistic locations interact with each other. This interaction contains delays caused by time needed for delivery of the material. Complexity of the system, time-delays and perturbations in a customer demand may cause unstable behaviour of the network. This leads to the loss of the customers and high inventory costs. Thus the investigation of the network on stability is desired during its design. In this article we consider local input-to-state stability of such logistics networks. Their behaviour is described by a functional differential equation with a constant time-delay. We are looking for verifiable conditio…