0000000000185985
AUTHOR
E. Palcevskis
Oxygen-related defects and energy accumulation in aluminum nitride ceramics
Abstract Features of oxygen-related defects in the AlN crystalline lattice were studied. Spectral characteristics of photoluminescence and photostimulated luminescence under the UV light irradiation of AlN ceramics were examined. The results obtained allow us to propose the mechanisms of luminescence and radiation-induced energy accumulation in AlN.
AlN Ceramics from Nanosized Plasma Processed Powder, its Properties and Application
Spectral properties of AIN ceramics
Spectral properties of oxygen-related defects are studied in AIN ceramics at room temperatures. Original results concerning the photoluminescence under ultraviolet irradiation are obtained; they include the excitation spectrum and irradiation dose effects. The ultraviolet light energy storage and its release under irradiation with visible or infrared light in the form of the photostimulated luminescence has been observed in AIN ceramics. The properties of the photostimulated luminescence such as creation, emission and stimulation spectra are reported. For the explanation of the experimental results the mechanism of the recombination luminescence involving the oxygen-related defect is propos…
Spectral characterization of bulk and nanostructured aluminum nitride
Spectral characteristics including photoluminescence (PL) spectra and its excitation spectra for different AlN materials (AlN ceramics, macro size powder and nanostructured forms such as nanopowder, nanorods and nanotips) were investigated at room temperature. Besides the well known UV-blue (around 400 nm) and red (600 nm) luminescence, the 480 nm band was also observed as an asymmetric long-wavelength shoulder of the UV-blue PL band. This band can be related to the luminescence of some kind of surface defects, probably also including the oxygen-related defects. The mechanisms of recombination luminescence and excitation of the UV-blue luminescence caused by the oxygen-related defects were …
Properties of Nanosized Ferrite Powders and Sintered Materials Prepared by the Co-Precipitation Technology, Combined with the Spray-Drying Method
Cobalt and nickel ferrites powders are synthesized by the co-precipitation technology, combined with the spray-drying method. The crystallite size, specific surface area (SSA), magnetic properties of synthesized products are investigated. All the synthesized ferrites are nanocrystalline single phase materials with crystallite size of 5-6 nm, the SSA of 80-85 m2/g and the calculated particle size of 13-15 nm. After spray-drying granules of the size up to 10 μm are obtained. After thermal treatment at 550 and 950 °C SSA decreases to 40-50 m2/g and 20-22 m2/g, respectively. The saturation magnetization at these temperatures increase from 17 to 40 emu/g for NiFe2O4 and from 51 to 77 emu/g for C…