0000000000186059

AUTHOR

Patrice Peyre

showing 12 related works from this author

Experimental and Numerical Analysis of the Distribution of Residual Stresses Induced by Laser Shock Peening in a 2050-T8 Aluminium Alloy

2011

Laser shock peening (LSP) is an innovative surface treatment technique successfully applied to improving fatigue performance of metallic material. The specific characteristic of (LSP) is the generation of a low work-hardening and a deep compressive residual stresses mechanically produced by a laser-induced shock wave propagating in the material. The aim of this study is to analyse the residual stress distribution induced by laser peening in 2050-T8 aluminium alloy experimentally by the X-ray diffraction technique (method sin2Y) and numerically, by a finite element numerical modelling. A specific focus was put on the residual stress distribution along the surface of the impacted material.

Shock waveMaterials scienceMechanical EngineeringLaser peeningMetallurgyPeeningCondensed Matter PhysicsShot peeningFinite element methodShock (mechanics)Mechanics of MaterialsResidual stressvisual_artAluminium alloyvisual_art.visual_art_mediumGeneral Materials ScienceMaterials Science Forum
researchProduct

Local electrochemical impedance spectroscopy study of the influence of ageing in air and laser shock processing on the micro-electrochemical behaviou…

2011

International audience; In the present paper, the micro-electrochemical behaviour of AA2050-T8 in 0.1 M NaCl was first studied after polishing by means of local electrochemical impedance spectroscopy and field-emission scanning electron microscopy/electron dispersive spectroscopy (FE-SEM/EDS). The influence of ageing in air and LSP was then investigated. Ageing in air for three months led to an increase in the charge transfer resistance. This was clearly observed in sites surrounding constituent particles where the charge transfer resistance was in the order of 1 MΩ cm2 (instead of 10-3 MΩ cm2 after polishing). Increased passivity around particles was confirmed from FE-SEM/EDS analysis. On …

Materials scienceMatériaux [Sciences de l'ingénieur]Scanning electron microscope020209 energyGeneral Chemical EngineeringAnalytical chemistryOxidePolishing02 engineering and technology021001 nanoscience & nanotechnologyMicrostructureDielectric spectroscopy[SPI.MAT]Engineering Sciences [physics]/MaterialsStress (mechanics)chemistry.chemical_compoundchemistryvisual_art0202 electrical engineering electronic engineering information engineeringElectrochemistryAluminium alloyvisual_art.visual_art_mediumAluminium alloy - Capillary techniques - Corrosion - EIS - Microstructure0210 nano-technologySpectroscopy
researchProduct

Influence of the microstructure and laser shock processing (LSP) on the corrosion behaviour of the AA2050-T8 aluminium alloy

2011

International audience; The corrosion behaviour of AA2050-T8 was studied after polishing and after laser shock processing (LSP) treatment using the electrochemical microcell technique and the SVET. After polishing, pitting at constituent particles and intergranular corrosion were observed. By contrast, no intergranular corrosion developed after LSP. Microcell measurements revealed that LSP increases the pitting potential. SVET measurements revealed that local anodic currents are systematically lower on LSP-treated surfaces than on polished ones. The current density on the LSP-treated surface remains constant around 50 μA cm−2 up to 123 min after immersion, while on the polished surface it r…

Materials scienceMatériaux [Sciences de l'ingénieur]Aluminium alloyGeneral Chemical EngineeringPolishing02 engineering and technologyCorrosion[SPI.MAT]Engineering Sciences [physics]/Materials0203 mechanical engineeringIntergranular corrosionPolarizationPitting corrosionAluminium alloyGeneral Materials SciencePitting corrosionPolarization (electrochemistry)MetallurgyAluminium alloy - Polarization - Intergranular corrosion - Pitting corrosion - Effects of strainGeneral ChemistryIntergranular corrosion021001 nanoscience & nanotechnologyMicrostructureEffects of strain020303 mechanical engineering & transportsvisual_artvisual_art.visual_art_medium0210 nano-technologyCurrent density
researchProduct

Aluminum to titanium laser welding-brazing in V-shaped grooveI

2017

International audience; Laser assisted joining of AA5754 aluminum alloy to T40 titanium with use of Al-Si filler wires was carried out. Continuous Yb:YAG laser beam was shaped into double spot tandem and defocalized to cover larger interaction zone in V shaped groove. Experimental design method was applied to study the influence of operational parameters on the tensile properties of the joints. Microstructure examination and fractography study were carried out to understand the relation between local phase content and fracture mode.Within defined window of operational parameters, statistically important factors that influenced the strength of T40 to AA5754 joints in V groove configuration w…

0209 industrial biotechnologyMatériaux [Sciences de l'ingénieur]Materials science[ SPI.MECA ] Engineering Sciences [physics]/Mechanics [physics.med-ph][ SPI.MAT ] Engineering Sciences [physics]/MaterialsFractography02 engineering and technologyIndustrial and Manufacturing Engineering[SPI.MAT]Engineering Sciences [physics]/Materials020901 industrial engineering & automationUltimate tensile strengthBrazingTitanium alloysJoint (geology)Groove (engineering)Filler metalMécanique [Sciences de l'ingénieur]MetallurgyMetals and AlloysLaser beam weldingTitanium alloy[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]021001 nanoscience & nanotechnologyAluminum alloysComputer Science ApplicationsModeling and SimulationCeramics and CompositesLaser weldingDissimilar metal joint0210 nano-technology
researchProduct

Improving the high temperature oxidation resistance of Ti-β21S by mechanical surface treatment

2020

The improvement of the high temperature oxidation resistance of titanium alloys is currently a technological challenge. Mechanical surface treatments as shot-peening (SP) have shown their ability to improve the behaviour of pure zirconium and titanium. However, shot-peening treatments can induce a significant surface contamination. Laser shock peening (LSP) appears as a good alternative. Here, we have investigated the effect of SP and LSP treatments on the HT oxidation behavior of Ti-β21S. Samples treated by these methods have been compared to untreated ones for long exposures (3000 h) at 700 °C in dry air. The samples placed in a furnace at 700 °C were periodically extracted to be weighed.…

010302 applied physicsSurface (mathematics)Materials scienceChemical engineering020209 energy0103 physical sciences0202 electrical engineering electronic engineering information engineering02 engineering and technologyTA1-2040Engineering (General). Civil engineering (General)01 natural sciencesOxidation resistanceMATEC Web of Conferences
researchProduct

Finite element analysis of laser shock peening of 2050-T8 aluminum alloy

2015

Laser shock processing is a recently developed surface treatment designed to improve the mechanical properties and fatigue performance of materials, by inducing a deep compressive residual stress field. The purpose of this work is to investigate the residual stress distribution induced by laser shock processing in a 2050-T8 aeronautical aluminium alloy with both X-ray diffraction measurements and 3D finite element simulation. The method of X-ray diffraction is extensively used to characterize the crystallographic texture and the residual stress crystalline materials at different scales (macroscopic, mesoscopic and microscopic).Shock loading and materials’ dynamic response are experimentally…

DiffractionMatériaux [Sciences de l'ingénieur]Materials scienceResidual stressIndustrial and Manufacturing Engineering[SPI.MAT]Engineering Sciences [physics]/MaterialsMaterials Science(all)Residual stressModelling and SimulationHomogeneity (physics)Aluminium alloyGeneral Materials ScienceLaser shock peeningComposite materialAnisotropyMécanique [Sciences de l'ingénieur]business.industryMechanical EngineeringSurface stressFinite element analysisPeeningStructural engineering[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]Finite element methodMechanics of MaterialsModeling and Simulationvisual_artvisual_art.visual_art_mediumbusiness
researchProduct

Generation and characterization of T40/A5754 interfaces with lasers

2014

Laser-induced reactive wetting and brazing of T40 titanium with A5754 aluminum alloy with 1.5 mm thickness was carried out in lap-joint configuration, with or without the use of Al5Si filler wire. A 2.4 mm diameter laser spot was positioned on the aluminum side to provoke spreading and wetting of the lower titanium sheet, with relatively low scanning speeds (0.1 to 0.6 m/min). Process conditions did not play a very significant role on mechanical strengths, which were shown to reach 250-300 N/mm on a large range of laser power and scanning speeds. In all cases considered, the fracture during tensile testing occurred next to the TiAl3 interface, but in the aluminum fusion zone. In a second st…

Materials scienceMatériaux [Sciences de l'ingénieur][ SPI.MECA ] Engineering Sciences [physics]/Mechanics [physics.med-ph]Alloy[ SPI.MAT ] Engineering Sciences [physics]/Materialschemistry.chemical_elementLaserengineering.materialIndustrial and Manufacturing Engineeringlaw.invention[SPI.MAT]Engineering Sciences [physics]/MaterialsShock waveslawAluminiumBrazing[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringLaser power scalingDissimilar joiningComposite materialOptique / photonique [Sciences de l'ingénieur]Tensile testingTitaniumBond strengthMécanique [Sciences de l'ingénieur]Génie des procédés [Sciences de l'ingénieur]Metals and Alloys[ SPI.GPROC ] Engineering Sciences [physics]/Chemical and Process Engineering[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]LaserComputer Science ApplicationschemistryModeling and SimulationaluminumCeramics and Compositesengineering[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicWetting[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicTitanium
researchProduct

Laser shock processing with two different laser sources on 2050‐T8 aluminum alloy

2011

PurposeThe purpose of this paper is to conduct a comparative study of the surface modifications induced by two different lasers on a 2050‐T8 aluminum alloy, with a specific consideration of residual stress and work‐hardening levels.Design/methodology/approachTwo lasers have been used for Laser shock peening (LSP) treatment in water‐confined regime: a Continuum Powerlite Plus laser, operating at 0.532 mm with 9 ns laser pulses, and near 1.5mm spot diameters; a new generation Gaia‐R Thales laser delivering 10 J‐10 ns impacts, with 4‐6mm homogeneous laser spots at 1.06 mm. Surface deformation, work‐hardening levels and residual stresses were analyzed for both LSP conditions. Residual stresses …

Materials scienceMechanical EngineeringLaser peeningMetallurgyAlloychemistry.chemical_elementPeeningengineering.materialLaserFinite element methodlaw.inventionShock (mechanics)chemistryMechanics of MaterialsAluminiumResidual stresslawengineeringComposite materialCivil and Structural EngineeringInternational Journal of Structural Integrity
researchProduct

Improving the high temperature (HT) oxidation resistance of a Beta-Titanium alloys by mechanical treatments

2019

International audience

[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph][PHYS.MECA.MEMA] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]ComputingMilieux_MISCELLANEOUS
researchProduct

Influence of surface Shock-peening treatment on high temperature oxidation of Titanium

2016

International audience

[SPI]Engineering Sciences [physics][SPI] Engineering Sciences [physics]ComputingMilieux_MISCELLANEOUS
researchProduct

Kinetics study of mechanically treated pure titanium with enhancement of the high temperature oxidation resistance

2018

International audience

[SPI]Engineering Sciences [physics][SPI] Engineering Sciences [physics]ComputingMilieux_MISCELLANEOUS
researchProduct

Role of nitrogen in the high temperature oxidation of mechanically treated pure titanium

2019

International audience

[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph][PHYS.MECA.MEMA] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]ComputingMilieux_MISCELLANEOUS
researchProduct