0000000000186184

AUTHOR

I. Izotov

High intensity neutrino oscillation facilities in Europe

The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neu…

research product

Periodic Beam Current Oscillations Driven by Electron Cyclotron Instabilities in ECRIS Plasmas

Experimental observation of cyclotron instabilities in electron cyclotron resonance ion source plasma operated in cwmode is reported. The instabilities are associated with strong microwave emission and a burst of energetic electrons escaping the plasma, and explain the periodic oscillations of the extracted beam currents. The instabilities are shown to restrict the parameter space available for the optimization of high charge state ion currents. nonPeerReviewed

research product

Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma

The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1–10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was shown that this plasma instability causes perturbations of the extracted ion current, which limits the performance of the ion source and generates strong bursts of bremsstrahlung emission. In this artic…

research product

High Current Proton and Deuteron Beams for Accelerators and Neutron Generators

This paper presents the latest results of high current proton and deuteron beam production at SMIS 37 facility at the Institute of Applied Physics (IAP RAS). In this experimental setup the plasma is created and the electrons are heated by 37.5 GHz gyrotron radiation with power up to 100 kW in a simple mirror trap fulfilling the ECR condition. High microwave power and frequency allow sustaining higher density hydrogen plasma (ne up to 2·1013 cm-3) in comparison to conventional ECRIS’s or microwave sources. The low ion temperature, on the order of a few eV, is beneficial to produce proton beams with low emittance. Latest experiments at SMIS 37 were performed using a single-aperture two-electr…

research product

HIISI, New 18 GHZ ECRIS for the JYFL Accelerator Laboratory

At the end of 2013 the Academy of Finland granted an infrastructure funding for the JYFL Accelerator Laboratory in order to increase beam intensities for the international user community. The primary objective is to construct a new high performance ECR ion source, HIISI (Heavy Ion Ion Source Injector), for the K130 cyclotron. Using room temperature magnets the HIISI has been designed to produce about the same magnetic field configuration as the superconducting ECRIS SUSI at NSCL/MSU for 18 GHz operation. An innovative structure will be used to maximize the radial confinement and demagnetization safety margin of the permanent magnets. The sextupole magnet is separated and insulated from the …

research product