0000000000186205

AUTHOR

N. Gelli

High intensity neutrino oscillation facilities in Europe

The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neu…

research product

Clustering effects in 48Cr composite nucleus produced via the reaction 24Mg + 24Mg at the excitation energy of 60 MeV

The reaction 24Mg + 24Mg was used to produce the composite nucleus 48Cr at 60 MeV of excitation energy where a narrow resonance (170 KeV) has been found by measuring the elastic and inelastic channels. To determine the occurrence of deformation of this compound nucleus and its possible connection with the resonances and the hypothetical cluster structure, evaporative Light Charged Particles (LCP) were measured and compared to Statistical Model (SM) predictions. The experiment was performed at LNL using the 8πLP apparatus. The comparison of the evaporation residue-LCP coincidence angular distributions and LCP energy spectra with SM calculations supports the presence of a very large deformati…

research product

Fission dynamics: The quest of a temperature dependent nuclear viscosity

This paper presents a journey within some open questions about the current use of a temperature dependent nuclear viscosity in models of nuclear fission and proposes an alternative experimental approach by using systems of intermediate fissility. This study is particularly relevant because: i) systems of intermediate fissility offer a suitable frame-work since the intervals between the compound nucleus and scission point temperatures with increasing excitation energy are much smaller than in the case of heavier systems, ii) the dependence of viscosity on the temperature may change with the fissility of the composite system; iii) the opportunity to measure also observables in the evaporation…

research product

Is nuclear viscosity dependent on temperature?

Nuclear viscosity is an indispensable ingredient of the nuclear fission collective dynamical models. It governs the exchange of energy between the collective variables and the thermal bath. Its dependence on the shape and temperature is a matter of controversy. By using systems of intermediate fissility we have demonstrated in a recent study that the viscosity parameters is larger for compact shapes, and decreases for larger deformations of the fissioning system, at variance with the conclusions of the statistical model modified to include empirically viscosity and time scales. In this contribution we propose an experimental scenario to highlight the possible dependence of the viscosity fro…

research product

Investigation of the reaction 64Ni+238U being an option of synthesizing element 120

This study is concerned with the search for entrance channels suitable to synthesize elements with Z > 118. Mass-energy distributions as well as capture cross-sections of fission-like fragments have been measured for the reactions 64Ni + 238U → 302120 and 48Ca + 238U → 286112 at energies near the Coulomb barrier. Compound nucleus fission cross-sections were estimated from the analysis of mass and total kinetic energy distributions. The cross-section drops three orders of magnitude for the formation of the compound nucleus with Z = 120 obtained in the reaction 64Ni + 238U compared to the formation of the compound nucleus with Z = 112 obtained in the reaction 48Ca + 238U at an excitation ener…

research product

Clustering effects inCr48composite nuclei produced via theMg24+Mg24reaction

The nuclear properties of $^{48}\mathrm{Cr}$ composite $\ensuremath{\alpha}$-like nuclei produced at 60 MeV of excitation energy via the $^{24}\mathrm{Mg}+^{24}\mathrm{Mg}$ reaction were investigated. This excitation energy corresponds to a resonance with a narrow width (170 keV) observed in the elastic and inelastic channels, which was interpreted as a highly deformed state. To gain insight on the deformation of this state exclusive measurements of light charged particles were carried out with $8\ensuremath{\pi}\mathrm{LP}$ apparatus at Laboratori Nazionali di Legnaro and compared to statistical model predictions. The measured of $\ensuremath{\alpha}$-particle energy spectra, $\ensuremath{…

research product