0000000000186214

AUTHOR

R. Wands

High intensity neutrino oscillation facilities in Europe

The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neu…

research product

Toroidal magnetized iron neutrino detector for a neutrino factory

A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this paper, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large theta(13). The response and performance using the 10 GeV neutrino factory configuration ar…

research product

Status of a MIND type Neutrino Factory Far Detector

A realistic simulation and analysis of a Magnetized Iron Neutrino Detector (MIND) has been developed for the purpose of understanding the potential sensitivity of such a facility. The status of the MIND simulation and reconstruction as discussed in the interim design report is reviewed here. Priorities for producing a more realistic simulation for a reference design report will be discussed, as will be the steps that have already been taken towards an improved simulation.

research product