0000000000186344
AUTHOR
Verónica G. Vegas
Rational Design of Copper(II)-Uracil Nanoprocessed Coordination Polymers to Improve Their Cytotoxic Activity in Biological Media
This work is focused on the rational structural design of two isostructural Cu(II) nano-coordination polymers (NCPs) with uracil-1-acetic acid (UAcOH) (CP1n) and 5-fluorouracil-1-acetic acid (CP2n). Suitable single crystals for ꭕ-ray diffraction studies of CP1 and CP2 were prepared under hydrothermal conditions, enabling their structural determination as 1D-CP ladder-like polymeric structures. The control of the synthetic parameters allows their processability into water colloids based on nanoplates (CP1n and CP2n). These NCPs are stable in water at physiological pHs for long periods. However, interestingly, CP1n is chemically altered in culture media. These transformations provoke the part…
Copper(II)–Thymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers
This is the peer reviewed version of the following article: Vegas, V. G., Lorca, R., Latorre, A., Hassanein, K., Gómez‐García, C. J., Castillo, O., ... & Amo‐Ochoa, P. (2017). Copper (II)–Thymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers. Angewandte Chemie International Edition, 56(4), 987-991, which has been published in final form at https://doi.org/10.1002/anie.201609031. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions
A bioinspired metal–organic approach to cross-linked functional 3D nanofibrous hydro- and aero-gels with effective mixture separation of nucleobases by molecular recognition
The direct reaction between Cu(CH3COO)2 and uracil-1-acetic acid in water gives rise to the formation of a hydrogel consisting of entangled nanometric ribbons of a crystalline antiferromagnetic 1D Cu(ii) coordination polymer (CP) decorated with biocompatible uracil nucleobases. This hydrogel is the precursor for the preparation of a meso/macroporous ultralight aerogel that shows a remarkable Young's modulus. As a proof-of-concept of the molecular recognition capability of the terminal uracil moieties anchored at Cu(ii) CP chains, this material has been tested as the selective stationary phase for the separation of nucleobase derivatives in HPLC columns.
Direct formation of Sub-Micron and Nanoparticles of a bioinspired coordination polymer based on Copper with Adenine
We report on the use of different reaction conditions, e.g., temperature, time, and/or concentration of reactants, to gain control over the particle formation of a bioinspired coordination polymer based on copper(II) and adenine, allowing homogeneous particle production from microto submicro-, and up to nano-size. Additionally, studies on this reaction carried out in the presence of different surfactants gives rise to the control of the particle size due to the modulation of the electrostatic interactions. Stability of the water suspensions obtained within the time and pH has been evaluated. We have also studied that there is no significant effect of the size reduction in the magnetic prope…
Multifunctional coordination polymers based on copper with modified nucleobases, easily modulated in size and conductivity.
This Accepted Manuscript will be available for reuse under a CC BY-NC-ND licence after 24 months of embargo period
CCDC 2064123: Experimental Crystal Structure Determination
Related Article: Verónica G. Vegas, Ana Latorre, María Luisa Marcos, Carlos J. Gómez-García, Óscar Castillo, Félix Zamora, Jacobo Gómez, José Martínez-Costas, Miguel Vázquez López, Álvaro Somoza, Pilar Amo-Ochoa|2021|ACS Applied Materials and Interfaces|13|31|doi:10.1021/acsami.1c11612
CCDC 1934515: Experimental Crystal Structure Determination
Related Article: Verónica G. Vegas, Noelia Maldonado, Oscar Castillo, Carlos J. Gómez-García, Pilar Amo-Ochoa|2019|J.Inorg.Biochem.|200|110805|doi:10.1016/j.jinorgbio.2019.110805
CCDC 1934514: Experimental Crystal Structure Determination
Related Article: Verónica G. Vegas, Noelia Maldonado, Oscar Castillo, Carlos J. Gómez-García, Pilar Amo-Ochoa|2019|J.Inorg.Biochem.|200|110805|doi:10.1016/j.jinorgbio.2019.110805
CCDC 1934513: Experimental Crystal Structure Determination
Related Article: Verónica G. Vegas, Noelia Maldonado, Oscar Castillo, Carlos J. Gómez-García, Pilar Amo-Ochoa|2019|J.Inorg.Biochem.|200|110805|doi:10.1016/j.jinorgbio.2019.110805
CCDC 2064122: Experimental Crystal Structure Determination
Related Article: Verónica G. Vegas, Ana Latorre, María Luisa Marcos, Carlos J. Gómez-García, Óscar Castillo, Félix Zamora, Jacobo Gómez, José Martínez-Costas, Miguel Vázquez López, Álvaro Somoza, Pilar Amo-Ochoa|2021|ACS Applied Materials and Interfaces|13|31|doi:10.1021/acsami.1c11612
CCDC 1496195: Experimental Crystal Structure Determination
Related Article: Verónica G. Vegas, Romina Lorca, Ana Latorre, Khaled Hassanein, Carlos J. Gómez-García, Oscar Castillo, Álvaro Somoza, Félix Zamora, Pilar Amo-Ochoa|2017|Angew.Chem.,Int.Ed.|56|987|doi:10.1002/anie.201609031