0000000000186469

AUTHOR

S. N. Achary

showing 3 related works from this author

Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph

2015

We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2-0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneo…

Phase transitionTransformationsMaterials scienceCoprecipitationFOS: Physical sciencesGeneral Physics and AstronomySynchrotronPerformancesPhysics - GeophysicsTetragonal crystal systemX-Ray DiffractionAb initio quantum chemistry methodsCoprecipitationPhysics - Chemical PhysicsCrystalMonaziteChemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)Phase-transitionCompresssibilityGeophysics (physics.geo-ph)CrystallographyPolymorphism (materials science)FISICA APLICADAX-ray crystallographyPowder diffractionStateMonoclinic crystal system
researchProduct

New high-pressure phase and equation of state of Ce2Zr2O8

2012

In this paper we report a new high-pressure rhombohedral phase of Ce2Zr2O8 observed from high-pressure angle-dispersive x-ray diffraction and Raman spectroscopy studies up to nearly 12 GPa. The ambient-pressure cubic phase of Ce2Zr2O8 transforms to a rhombohedral structure beyond 5 GPa with a feeble distortion in the lattice. Pressure evolution of unit-cell volume showed a change in compressibility above 5 GPa. The unit-cell parameters of the high-pressure rhombohedral phase at 12.1 GPa are ah = 14.6791(3) {\AA}, ch = 17.9421(5) {\AA}, V = 3348.1(1) {\AA}3. The structure relation between the parent cubic (P2_13) and rhombohedral (P3_2) phases were obtained by group-subgroup relations. All t…

powdersEquation of statePhase transitionMaterials scienceFOS: Physical sciencesGeneral Physics and AstronomyThermodynamicsCrystal structurePressure coefficientCondensed Matter::Materials Sciencesymbols.namesakefluoritePhase (matter)OxidationCondensed Matter - Materials ScienceRietveld refinementCrystal structureEquations of stateMaterials Science (cond-mat.mtrl-sci)phase transitionshigh pressurex-ray diffractionFISICA APLICADACompressibilitysymbolsraman spectraRaman spectroscopyrietveld refinement
researchProduct

Pressure-induced phase transformation in zircon-type orthovanadate SmVO4from experiment and theory

2016

The compression behavior of zircon-type samarium orthovanadate, SmVO4, has been investigated using synchrotron-based powder x-ray diffraction and ab-initio calculations up to 21 GPa. The results indicate the instability of ambient zircon phase at around 6 GPa, which transforms to a high-density scheelite-type phase. The high-pressure phase remains stable up to 21 GPa, the highest pressure reached in the present investigations. On pressure release, the scheelite phase is recovered. Crystal structure of high-pressure phase and equations of state (EOS) for the zircon- and scheelite-type phases have been determined. Various compressibilities such as bulk, axial and bond, estimated from the expe…

Diffraction86Materials scienceFOS: Physical scienceschemistry.chemical_elementThermodynamics02 engineering and technologyCrystal structure01 natural sciencesInstabilityPhysics::GeophysicsCondensed Matter::Materials Sciencechemistry.chemical_compoundAb initio quantum chemistry methodsPhase (matter)0103 physical sciencesGeneral Materials Science010306 general physicsCondensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyCondensed Matter PhysicsSamariumchemistryScheelite0210 nano-technologyZirconJournal of Physics: Condensed Matter
researchProduct