0000000000187403
AUTHOR
Nicola Franchi
Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium.
The major thiol-containing molecules involved in controlling the level of intracellular ROS in eukaryotes, acting as a nonenzymatic detoxification system, are metallothioneins (MTs), glutathione (GSH) and phytochelatins (PCs). Both MTs and GSH are well-known in the animal kingdom. PC was considered a prerogative of the plant kingdom but, in 2001, a phytochelatin synthase (PCS) gene was described in the nematode Caenorhabditis elegans; additional genes encoding this enzyme were later described in the earthworm Eisenia fetida and in the parasitic nematode Schistosoma mansoni but scanty data are available, up to now, for Deuterostomes. Here, we describe the molecular characteristics and transc…
Influence of cadmium on the morphology and functionality of haemocytes in the compound ascidian Botryllus schlosseri
In order to get insights into the effects of cadmium (Cd) on cell morphology and functions, we exposed haemocytes of the colonial ascidian Botryllus schlosseri to sub-lethal concentrations of CdCl(2). Results indicate that Cd hampers haemocyte spreading and phagocytosis in a dose-dependent way, through the alteration of the actin cytoskeleton. In addition, the metal decreases the stability of the internal membranes, as revealed by the Neutral Red assay. The fraction of cells showing positivity for the lysosomal enzyme acid phosphatase is also reduced in the presence of Cd, whereas the number of cells responsive to the Annexin-V assay and showing chromatin condensation increases, suggesting …
Routes in Innate Immunity Evolution: Galectins and Rhamnose-binding Lectins in Ascidians
Characterization and metal-induced gene transcription of two new copper zinc superoxide dismutases in the solitary ascidian Ciona intestinalis
Antioxidant enzymes are known to protect living organisms against the oxidative stress risk, also induced by metals. In the present study, we describe the purification and molecular characterization of two Cu,Zn superoxide dismutases (SODs), referred to as Ci-SODa and Ci-SODb, from Ciona intestinalis, a basal chordate widely distributed in temperate shallow seawater. The putative amino acid sequences were compared with Cu,Zn SODs from other metazoans and phylogenetic analyses indicate that the two putative Ci-SODs are more related to invertebrate SODs than vertebrate ones. Both phylogenetic and preliminary homology modeling analyses suggest that Ci-SODa and Ci-SODb are extracellular and int…
Correction to: Echinodermata: The Complex Immune System in Echinoderms
Echinodermata: The complex immune system in echinoderms
View references (418) The Echinodermata are an ancient phylum of benthic marine invertebrates with a dispersal-stage planktonic larva. These animals have innate immune systems characterized initially by clearance of foreign particles, including microbes, from the body cavity of both larvae and adults, and allograft tissue rejection in adults. Immune responsiveness is mediated by a variety of adult coelomocytes and larval mesenchyme cells. Echinoderm diseases from a range of pathogens can lead to mass die-offs and impact aquaculture, but some individuals can recover. Genome sequences of several echinoderms have identified genes with immune function, including expanded families of Toll-like r…