0000000000187464

AUTHOR

Hugo ÁGuas

0000-0001-7350-649x

showing 3 related works from this author

Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors

2014

The authors acknowledge Francesco Ruffino for the AFM measurements. This work was funded by the EU FP7 Marie Curie Action FP7-PEOPLE-2010-ITN through the PROPHET project (Grant No. 264687), the bilateral CNR/AVCR project "Photoresponse of nanostructures for advanced photovoltaic applications", the MIUR project Energetic (Grant no. PON02_00355_3391233) and by the Portuguese Science Foundation (FCT-MEC) through the Strategic Project PEst-C/CTM/LA0025/2013-14 and the research project PTDC/CTM-ENE/2514/2012. Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhance…

SiliconMaterials scienceConformal growthSiliconchemistry.chemical_elementPlasmon02 engineering and technologyFILMS01 natural sciences7. Clean energySilver A-Si:H solar cellSettore ING-INF/01 - ElettronicaLight scatteringOptics0103 physical sciencesPhotocurrentFabrication parameterPlasmonic solar cellThin filmSILICONPhotocurrent enhancementPlasmon010302 applied physicsPhotocurrentbusiness.industryLight scattering021001 nanoscience & nanotechnologySolar energyScattering effectAtomic and Molecular Physics and OpticschemistryDiffuse reflectionOptoelectronicsDiffuse reflectionThin-film silicon solar cells Silicon solar cells0210 nano-technologybusinessSilver nanoparticle (NPs)Optics Express
researchProduct

Photocurrent enhancement in thin a-Si:H solar cells via plasmonic light trapping

2014

Photocurrent enhancement in thin a-Si:H solar cells due to the plasmonic light trapping is investigated, and correlated with the morphology and the optical properties of the selfassembled silver nanoparticles incorporated in the cells' back reflector. © 2014 OSA.

Photocurrentanimal structuresMaterials sciencegenetic structuresbusiness.industryScanning electron microscopeTrappingSolar energySettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della Materiaeye diseasesSilver nanoparticleSolar cell efficiencyOptoelectronicssense organsPlasmonic solar cellbusinessInstrumentationPlasmon
researchProduct

Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids

2015

The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids wi…

Materials sciencePhotovoltaics light trapping plasmonics Mie scatterers thin film silicon solar cells.NanoparticlePhysics::OpticsBioengineeringMie scatterersMie scattererSettore ING-INF/01 - Elettronica7. Clean energyLight scatteringplasmonicsthin film silicon solar cellsMechanics of MaterialGeneral Materials SciencePlasmonic solar cellElectrical and Electronic EngineeringThin filmPlasmonbusiness.industryScatteringMechanical EngineeringChemistry (all)Surface plasmonNanocrystalline siliconGeneral ChemistryPlasmonicThin film silicon solar cellphotovoltaicsMechanics of MaterialsOptoelectronicslight trappingMaterials Science (all)businessPhotovoltaic
researchProduct