6533b7d2fe1ef96bd125f59d

RESEARCH PRODUCT

Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors

Manuel J. MendesSalvo MirabellaHugo ÁGuasTiago MateusSergej FilonovichSeweryn MorawiecFrancesca SimoneIsabel M.p.l.v.o. FerreiraFrancesco PrioloIsodiana CrupiRodrigo MartinsElvira Fortunato

subject

SiliconMaterials scienceConformal growthSiliconchemistry.chemical_elementPlasmon02 engineering and technologyFILMS01 natural sciences7. Clean energySilver A-Si:H solar cellSettore ING-INF/01 - ElettronicaLight scatteringOptics0103 physical sciencesPhotocurrentFabrication parameterPlasmonic solar cellThin filmSILICONPhotocurrent enhancementPlasmon010302 applied physicsPhotocurrentbusiness.industryLight scattering021001 nanoscience & nanotechnologySolar energyScattering effectAtomic and Molecular Physics and OpticschemistryDiffuse reflectionOptoelectronicsDiffuse reflectionThin-film silicon solar cells Silicon solar cells0210 nano-technologybusinessSilver nanoparticle (NPs)

description

The authors acknowledge Francesco Ruffino for the AFM measurements. This work was funded by the EU FP7 Marie Curie Action FP7-PEOPLE-2010-ITN through the PROPHET project (Grant No. 264687), the bilateral CNR/AVCR project "Photoresponse of nanostructures for advanced photovoltaic applications", the MIUR project Energetic (Grant no. PON02_00355_3391233) and by the Portuguese Science Foundation (FCT-MEC) through the Strategic Project PEst-C/CTM/LA0025/2013-14 and the research project PTDC/CTM-ENE/2514/2012. Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled silver nanoparticles (NPs), incorporated on the cells' rear contact. The optical properties of the PBRs are investigated according to the morphology of the NPs, which can be tuned by the fabrication parameters. By analyzing sets of solar cells built on distinct PBRs we show that the photocurrent enhancement achieved in the a-Si:H light trapping window (600 - 800 nm) stays in linear relation with the PBRs diffuse reflection. The best-performing PBRs allow a pronounced broadband photocurrent enhancement in the cells which is attributed not only to the plasmon-assisted light scattering from the NPs but also to the front surface texture originated from the conformal growth of the cell material over the particles. As a result, remarkably high values of J(sc) and V-oc are achieved in comparison to those previously reported in the literature for the same type of devices. (C)2014 Optical Society of America publishersversion published

10.1364/oe.22.0a1059http://dx.doi.org/10.1364/oe.22.0a1059