0000000000087816

AUTHOR

Francesca Simone

showing 17 related works from this author

Colloidal Self-assembled Nanosphere Arrays for Plasmon-enhanced Light Trapping in Thin Film Silicon Solar Cells

2014

To realize high-efficiency thin-film silicon solar cells it is crucial to develop light-trapping methods that can increase absorption of the near- bandgap light in the silicon material. That can be achieved using the far-field scattering properties of metal nanoparticles (MNP) sustaining surface plasmons. The MNPs should be inserted in the back of the cell, embedded in the transparent conductive oxide (TCO) layer which separates the rear mirror from the silicon layers. In this way, a plasmonic back reflector (PBR) is constructed that can redirect light at angles away from the incidence direction and thereby increase its path length in the cell material. In this work, a novel technique is pr…

Light trappingMaterials scienceSiliconScatteringSurface plasmonColloidal Metal Nanoparticlechemistry.chemical_elementNanotechnologyThin film solar cellsPlasmonicSettore ING-INF/01 - ElettronicaEnergy (all)chemistryEnergy(all)Colloidal Metal NanoparticlesColloidal goldPlasmonicsMie theoryPlasmonic solar cellThin filmPlasmonTransparent conducting filmThin film solar cellEnergy Procedia
researchProduct

Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors

2014

The authors acknowledge Francesco Ruffino for the AFM measurements. This work was funded by the EU FP7 Marie Curie Action FP7-PEOPLE-2010-ITN through the PROPHET project (Grant No. 264687), the bilateral CNR/AVCR project "Photoresponse of nanostructures for advanced photovoltaic applications", the MIUR project Energetic (Grant no. PON02_00355_3391233) and by the Portuguese Science Foundation (FCT-MEC) through the Strategic Project PEst-C/CTM/LA0025/2013-14 and the research project PTDC/CTM-ENE/2514/2012. Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhance…

SiliconMaterials scienceConformal growthSiliconchemistry.chemical_elementPlasmon02 engineering and technologyFILMS01 natural sciences7. Clean energySilver A-Si:H solar cellSettore ING-INF/01 - ElettronicaLight scatteringOptics0103 physical sciencesPhotocurrentFabrication parameterPlasmonic solar cellThin filmSILICONPhotocurrent enhancementPlasmon010302 applied physicsPhotocurrentbusiness.industryLight scattering021001 nanoscience & nanotechnologySolar energyScattering effectAtomic and Molecular Physics and OpticschemistryDiffuse reflectionOptoelectronicsDiffuse reflectionThin-film silicon solar cells Silicon solar cells0210 nano-technologybusinessSilver nanoparticle (NPs)Optics Express
researchProduct

Photocurrent enhancement in thin a-Si:H solar cells via plasmonic light trapping

2014

Photocurrent enhancement in thin a-Si:H solar cells due to the plasmonic light trapping is investigated, and correlated with the morphology and the optical properties of the selfassembled silver nanoparticles incorporated in the cells' back reflector. © 2014 OSA.

Photocurrentanimal structuresMaterials sciencegenetic structuresbusiness.industryScanning electron microscopeTrappingSolar energySettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della Materiaeye diseasesSilver nanoparticleSolar cell efficiencyOptoelectronicssense organsPlasmonic solar cellbusinessInstrumentationPlasmon
researchProduct

Colloidal plasmonic back reflectors for light trapping in solar cells.

2014

A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhib…

Materials scienceMie scatteringPhysics::OpticsReflectionTrapping7. Clean energyThin film devices Colloidal arraySettore ING-INF/01 - ElettronicaColloidal solutionColloidOpticsElectromagnetic simulationThin film solar cells PlasmonsLow temperatureGeneral Materials SciencePlasmonic solar cellThin filmPlasmonPhotocurrentNear infrared spectrabusiness.industrySolar cellCondensed Matter::Soft Condensed MatterSynthesis (chemical)Light trapping structureOptoelectronicsDiffuse reflectanceDiffuse reflectionbusinessNanoscale
researchProduct

Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation

2013

An innovative method for Si nanostructures (NS) fabrication is proposed, through nanosecond laser irradiation (lambda = 532 nm) of thin Si film (120 nm) on quartz. Varying the laser energy fluences (425-1130 mJ/cm(2)) distinct morphologies of Si NS appear, going from interconnected structures to isolated clusters. Film breaking occurs through a laser-induced dewetting process. Raman scattering is enhanced in all the obtained Si NS, with the largest enhancement in interconnected Si structures, pointing out an increased trapping of light due to multiple scattering. The reported method is fast, scalable and cheap, and can be applied for light management in photovoltaics. (C) 2013 AIP Publishin…

Innovative methodMaterials sciencePhysics and Astronomy (miscellaneous)Settore ING-INF/01 - ElettronicaLight scatteringQuartz SiliconSettore FIS/03 - Fisica Della Materialaw.inventionsymbols.namesakeLight managementSi nanostructures NanostructurelawDewetting proceLaser energieDewettingThin filmbusiness.industryScatteringIsolated clusterLaserInterconnected structureSemiconductorsymbolsOptoelectronicsbusinessRaman spectroscopyPhotovoltaicRaman scattering
researchProduct

Anomalous and normal Hall effect in hydrogenated amorphous Si prepared by plasma enhanced chemical vapor deposition

2010

The double sign anomaly of the Hall coefficient has been studied in p -doped and n -doped hydrogenated amorphous silicon grown by plasma enhanced chemical vapor deposition and annealed up to 500 °C. Dark conductivity as a function of temperature has been measured, pointing out a conduction mechanism mostly through the extended states. Anomalous Hall effect has been observed only in the as-deposited n -doped film, disappearing after annealing at 500 °C, while p -doped samples exhibit normal Hall effect. When Hall anomaly is present, a larger optical band gap and a greater Raman peak associated with Si-H bond are measured in comparison with the cases of normal Hall effect. The Hall anomaly wi…

inorganic chemicalsAmorphous siliconMaterials scienceSiliconAnnealing (metallurgy)Band gapeducationGeneral Physics and Astronomychemistry.chemical_elementSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaCondensed Matter::Materials Sciencechemistry.chemical_compoundsymbols.namesakePlasma-enhanced chemical vapor depositionHall effectSi-H bondingElectrical measurementsCondensed matter physicsHall effecttechnology industry and agricultureoptical gapCondensed Matter::Mesoscopic Systems and Quantum Hall EffectAmorphous solidchemistryHydrogenated amorphous siliconsymbolsdark conductivityRaman spectroscopypsychological phenomena and processes
researchProduct

TCO/Ag/TCO transparent electrodes for solar cells application

2014

Among transparent electrodes, transparent conductive oxides (TCO)/metal/TCO structures can achieve optical and electrical performances comparable to, or better than, single TCO layers and very thin metallic films. In this work, we report on thin multilayers based on aluminum zinc oxide (AZO), indium tin oxide (ITO) and Ag deposited by RF magnetron sputtering on soda lime glass at room temperature. The TCO/Ag/TCO structures with thicknesses of about 50/10/50 nm were deposited with all combinations of AZO and ITO as top and bottom layers. While the electrical conductivity is dominated by the Ag intralayer irrespective of the TCO nature, the optical transmissions show a dependence on the natur…

Soda-lime glassMaterials scienceTransparent electrode Electrodeschemistry.chemical_elementPhotovoltaic applicationrf-Magnetron sputteringMetalTransparent conductive oxideElectrical resistivity and conductivityAluminiumElectrical conductivityGeneral Materials ScienceElectrical performanceElectrical conductorbusiness.industryGeneral ChemistrySputter depositionElectrical and optical propertieITO glaIndium tin oxidechemistryvisual_artElectrodevisual_art.visual_art_mediumOptoelectronicsbusinessSilver Aluminum zinc oxideAluminum coatingMagnetron sputtering
researchProduct

Influence of the electro-optical properties of an a-Si:H single layer on the performances of a pin solar cell

2012

We analyze the results of an extensive characterization study involving electrical and optical measurements carried out on hydrogenated amorphous silicon (α-Si:H) thin film materials fabricated under a wide range of deposition conditions. By adjusting the synthesis parameters, we evidenced how conductivity, activation energy, electrical transport and optical absorption of an α-Si:H layer can be modified and optimized. We analyzed the activation energy and the pre-exponential factor of the dark conductivity by varying the dopant-to-silane gas flow ratio. Optical measurements allowed to extract the absorption spectra and the optical bandgap. Additionally, we report on the temperature dependen…

Amorphous siliconThin film materialThin film solar cell Activation energySingle junctionConductivitySettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materialaw.inventionchemistry.chemical_compoundElectric conductivitylawMaterials ChemistryThin filmAbsorption (electromagnetic radiation)Preexponential factorGas-flow ratioMetals and AlloysSurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTemperature dependenceHydrogenated amorphous siliconOptoelectronicsElectric propertieQuantum efficiencyHydrogenationOptical data processingDeposition conditionSiliconMaterials scienceActivation energyQuantum efficiencySynthesis conditionVapor deposition SiliconOpticsSolar cellActivation energyDark conductivityCharacterization studieElectromagnetic wave absorptionThin filmDepositionElectrooptical propertieThin film solar cellConductivitybusiness.industryEnergy conversion efficiencySolar cellAmorphous siliconMeyer-Neldel ruleOptical propertieOptical measurementelectro-optical propertiesNanostructured materialSilicon; Solar cell; electro-optical propertiesElectrical transportchemistrySynthesis parameterOptical variables measurementSingle layerConversion efficiencybusinessOptical gap
researchProduct

Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties

2013

The spectra of localized surface plasmon resonances (LSPRs) in self-assembled silver nanoparticles (NPs), prepared by solid-state dewetting of thin films, are discussed in terms of their structural properties. We summarize the dependences of size and shape of NPs on the fabrication conditions with a proposed structural-phase diagram. It was found that the surface coverage distribution and the mean surface coverage (SC) size were the most appropriate statistical parameters to describe the correlation between the morphology and the optical properties of the nanostructures. The results are interpreted with theoretical predictions based on Mie theory. The broadband scattering efficiency of LSPR…

Materials scienceMie scatteringSilver nanoparticlePhysics::OpticsPlasmonBioengineeringNanotechnologyScattering efficiency02 engineering and technologyStatistical parameterSettore ING-INF/01 - Elettronica01 natural sciences7. Clean energySilver nanoparticlelaw.inventionlawSurface coverage0103 physical sciencesSolar cellGeneral Materials ScienceDewettingElectrical and Electronic EngineeringThin filmPlasmon010302 applied physicsScatteringSurface plasmon resonance SilverMechanical EngineeringSolar cellStructural and optical propertieGeneral ChemistryLocalized surface plasmon resonance021001 nanoscience & nanotechnologyOptical propertiePhase diagramMechanics of MaterialsThin-film solar cells Nanoparticle0210 nano-technologySilver nanoparticle (NPs)Localized surface plasmon
researchProduct

Formation and evolution of self-organized Au nanorings on indium-tin-oxide surface

2011

This work reports on the formation of Au nanoclusters and on their evolution in nanoring structures on indium-tin-oxide surface by sputtering deposition and annealing processes. The quantification of the characteristics of the nanorings (surface density, depth, height, and width) is performed by atomic force microscopy. The possibility to control these characteristics by tuning annealing temperature and time is demonstrated establishing relations which allow to set the process parameters to obtain nanostructures of desired morphological properties for various technological applications. © 2011 American Institute of Physics.

PLASMON RESONANCEMaterials scienceNanostructureNanoringPhysics and Astronomy (miscellaneous)Annealing (metallurgy)NanotechnologySputter depositionAu; Nanoring; Atomic force microscopySettore ING-INF/01 - ElettronicaIndium tin oxideNanoclustersAtomic force microscopyNanolithographyITO THIN-FILMSSputteringGOLD NANOPARTICLESAuNanoring
researchProduct

Nanostructuring thin Au films on transparent conductive oxide substrates

2013

Fabrication processes of Au nanostructures on indium-tin-oxide (ITO) surface by simple, versatile, and low-cost bottom-up methodologies are investigated in this work. A first methodology exploits the patterning effects induced by nanosecond laser irradiations on thin Au films deposited on ITO surface. We show that after the laser irradiations, the Au film break-up into nanoclusters whose mean size and surface density are tunable by the laser fluence. A second methodology exploits, instead, the patterning effects of standard furnace thermal processes on the Au film deposited on the ITO. We observe, in this case, a peculiar shape evolution from pre-formed nanoclusters during the Au deposition…

NanoclusterLaser annealingMaterials scienceNanostructureFabricationNanoringPatterning effectGold depositAnnealing (metallurgy)NanotechnologyFluenceSettore ING-INF/01 - Elettronicalaw.inventionNanoclusterslawThermalDeposition stageAuGeneral Materials ScienceNanostructuringTransparent conducting filmDepositMechanical EngineeringNanoringsTransparent conductive oxides Conductive filmAnnealing temperatureCondensed Matter PhysicsLaserAu; ITO; NanostructuringFurnace annealingNanostructuresNanostructured materialFabrication proceMechanics of MaterialsOxide films GoldITO
researchProduct

Sputtered cuprous oxide thin films and nitrogen doping by ion implantation

2016

Abstract The structural, optical and electrical properties of sputtered cuprous oxide thin films have been optimized through post-deposition thermal treatments. Moreover we have studied the effects of nitrogen doping introduced by ion implantation followed by the optimized oxidant thermal annealing. Three concentrations have been used, 0.6 N%, 1.2 N%, and 2.5 N%. Along with the preservation of the Cu 2 O phase, a slight optical band gap narrowing and a significant conductivity enhancement has been observed with respect to the undoped samples. These results can be justified by the absence of further oxygen vacancies promoted by dopant introduction and by the substitution of O atoms by N ones…

OxidantPostimplantation annealingLattice configurationMaterials scienceBand gapAnnealing (metallurgy)NitrogenInorganic chemistryOxidePhotovoltaic application02 engineering and technology01 natural sciencesOxygen vacancieSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materiachemistry.chemical_compoundSputtering0103 physical sciencesMaterials ChemistryDopingSemiconductor dopingConductivity enhancementDoping (additives)Thin filmIonDepositionOxide film010302 applied physicsDopantDopingMetals and AlloysSputteringSurfaces and Interfaces021001 nanoscience & nanotechnologyOut of equilibriumSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsEnergy gapOptical and electrical propertieIon implantationchemistryIon implantationThermal-annealing0210 nano-technologyCopperCuprous oxide
researchProduct

Light harvesting with Ge quantum dots embedded in SiO2 and Si3N4

2014

Cataloged from PDF version of article. Germanium quantum dots (QDs) embedded in SiO2 or in Si3N4 have been studied for light harvesting purposes. SiGeO or SiGeN thin films, produced by plasma enhanced chemical vapor deposition, have been annealed up to 850 degrees C to induce Ge QD precipitation in Si based matrices. By varying the Ge content, the QD diameter can be tuned in the 3-9 nm range in the SiO2 matrix, or in the 1-2 nm range in the Si3N4 matrix, as measured by transmission electron microscopy. Thus, Si3N4 matrix hosts Ge QDs at higher density and more closely spaced than SiO2 matrix. Raman spectroscopy revealed a higher threshold for amorphous-to-crystalline transition for Ge QDs e…

Light-harvestingMaterials sciencegenetic structuresBand gapAnalytical chemistryGeneral Physics and AstronomyPhotodetectorchemistry.chemical_elementGermaniumGermanium NanocrystalsSettore ING-INF/01 - Elettronicasymbols.namesakeGe quantum dotPlasma-enhanced chemical vapor depositionThin filmFilmsbusiness.industrySilicon-nitridechemistryQuantum dotsymbolsOptoelectronicsQuantum efficiencyMechanismbusinessRaman spectroscopyConfinement
researchProduct

Laser irradiation of ZnO:Al/Ag/ZnO:Al multilayers for electrical isolation in thin film photovoltaics

2013

Laser irradiation of ZnO:Al/Ag/ZnO:Al transparent contacts is investigated for segmentation purposes. The quality of the irradiated areas has been experimentally evaluated by separation resistance measurements, and the results are complemented with a thermal model used for numerical simulations of the laser process. The presence of the Ag interlayer plays two key effects on the laser scribing process by increasing the maximum temperature reached in the structure and accelerating the cool down process. These evidences can promote the use of ultra-thin ZnO:Al/ Ag/ZnO:Al electrode in large-area products, such as for solar modules. © 2013 Crupi et al.; licensee Springer.

Materials scienceTransparent electrodesThin film photovoltaicNanochemistryNanotechnologyTransparent electrode AluminumSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materialaw.inventionElectrical isolationIrradiated areaMaterials Science(all)PhotovoltaicslawTransparent electrodes ; Multilayers; Pulsed laser scribingMultilayerGeneral Materials ScienceIrradiationThin filmLaser scribingNano Expressbusiness.industryMaximum temperaturePulsed laser scribingCondensed Matter PhysicsLaserThin film photovoltaicsMultilayersElectrical isolationElectrodeOptoelectronicsResistance measurementLaser scribing proceZinc oxide Film preparationbusinessLaser scribing
researchProduct

Light absorption in silicon quantum dots embedded in silica

2009

The photon absorption in Si quantum dots (QDs) embedded in SiO2 has been systematically investigated by varying several parameters of the QD synthesis. Plasma-enhanced chemical vapor deposition (PECVD) or magnetron cosputtering (MS) have been used to deposit, upon quartz substrates, single layer, or multilayer structures of Si-rich- SiO2 (SRO) with different Si content (43-46 at. %). SRO samples have been annealed for 1 h in the 450-1250 °C range and characterized by optical absorption measurements, photoluminescence analysis, Rutherford backscattering spectrometry and x-ray Photoelectron Spectroscopy. After annealing up to 900 °C SRO films grown by MS show a higher absorption coefficient a…

SOLAR-CELLSPhotoluminescenceMaterials scienceEFFICIENCYSiliconAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_elementChemical vapor depositionOPTICAL-PROPERTIESRutherford backscattering spectrometryFILMSSettore ING-INF/01 - Elettronica3RD-GENERATION PHOTOVOLTAICSSettore FIS/03 - Fisica Della MateriaMULTIPLE EXCITON GENERATIONchemistryX-ray photoelectron spectroscopyPlasma-enhanced chemical vapor depositionQuantum dotRAY PHOTOELECTRON-SPECTROSCOPYLUMINESCENCESI NANOCRYSTALSCOEFFICIENTAbsorption (electromagnetic radiation)
researchProduct

Room-temperature efficient light detection by amorphous Ge quantum wells

2013

In this work, ultrathin amorphous Ge films (2 to 30 nm in thickness) embedded in SiO2 layers were grown by magnetron sputtering and employed as proficient light sensitizer in photodetector devices. A noteworthy modification of the visible photon absorption is evidenced due to quantum confinement effects which cause both a blueshift (from 0.8 to 1.8 eV) in the bandgap and an enhancement (up to three times) in the optical oscillator strength of confined carriers. The reported quantum confinement effects have been exploited to enhance light detection by Ge quantum wells, as demonstrated by photodetectors with an internal quantum efficiency of 70%. © 2013 Cosentino et al.

NanostructurePhotonMaterials sciencePhotodetectorCONFINEMENTBlue shiftOptical oscillator strengthMaterials Science(all)Quantum confinement effectLight detectionQuantum confinementGeneral Materials ScienceLight absorptionPhotodetectorQuantum wellPotential wellNano ExpressPhoton absorptionSUPERLATTICESGermaniumbusiness.industryRoom temperature Amorphous filmInternal quantum efficiencyNANOCLUSTERSSemiconductor quantum wellCondensed Matter PhysicsPhotonNanostructuresBlueshiftAmorphous solidQuantum dotOptoelectronicsPHOTOLUMINESCENCEQuantum efficiencybusinessUltrathin films GermaniumGe quantum well
researchProduct

Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes

2012

Al-doped ZnO (AZO)/Ag/AZO multilayer coatings (50-70 nm thick) were grown at room temperature on glass substrates with different silver layer thickness, from 3 to 19 nm, by using radio frequency magnetron sputtering. Thermal stability of the compositional, optical and electrical properties of the AZO/Ag/AZO structures were investigated up to 400 °C and as a function of Ag film thickness. An AZO film as thin as 20 nm is an excellent barrier to Ag diffusion. The inclusion of 9.5 nm thin silver layer within the transparent conductive oxide (TCO) material leads to a maximum enhancement of the electro-optical characteristics. The excellent measured properties of low resistance, high transmittanc…

High transmittanceDiffusionrf-Magnetron sputteringElectro-optical characteristicGlass substrateTransparent conductive oxide RF magnetron sputtering Optical properties Electrical resistivity Al-doped zinc oxide Silver MultilayersSettore ING-INF/01 - ElettronicaSUBSTRATE-TEMPERATUREAg diffusionAl-doped ZnOLow resistanceMultilayerZNOMaterials ChemistryVisible spectral rangeMULTILAYER FILMSAl-doped zinc oxideOptical propertiesMetals and AlloysAZO filmElectrical resistivityOPTICAL-PROPERTIESOXIDE-FILMSSurfaces and InterfacesZinc oxide AluminumRadio frequency magnetron sputteringSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOptical and electrical propertieElectrodeOptoelectronicsFilm preparationLayer (electronics)Magnetron sputteringUltra-thinRF magnetron sputteringMaterials scienceSilverThermodynamic stabilityOpticsTransparent conductive oxideElectrical resistivity and conductivityThermal stabilityElectrical conductorTransparent conducting filmRoom temperatureThin film solar cellbusiness.industryTransparent conductiveOptical propertieSilver layerHigh transmittanceMultilayersMulti-layer-coatingZnO Electric conductivityMeasured propertiebusinessSubstrate
researchProduct