0000000000087816
AUTHOR
Francesca Simone
Colloidal Self-assembled Nanosphere Arrays for Plasmon-enhanced Light Trapping in Thin Film Silicon Solar Cells
To realize high-efficiency thin-film silicon solar cells it is crucial to develop light-trapping methods that can increase absorption of the near- bandgap light in the silicon material. That can be achieved using the far-field scattering properties of metal nanoparticles (MNP) sustaining surface plasmons. The MNPs should be inserted in the back of the cell, embedded in the transparent conductive oxide (TCO) layer which separates the rear mirror from the silicon layers. In this way, a plasmonic back reflector (PBR) is constructed that can redirect light at angles away from the incidence direction and thereby increase its path length in the cell material. In this work, a novel technique is pr…
Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors
The authors acknowledge Francesco Ruffino for the AFM measurements. This work was funded by the EU FP7 Marie Curie Action FP7-PEOPLE-2010-ITN through the PROPHET project (Grant No. 264687), the bilateral CNR/AVCR project "Photoresponse of nanostructures for advanced photovoltaic applications", the MIUR project Energetic (Grant no. PON02_00355_3391233) and by the Portuguese Science Foundation (FCT-MEC) through the Strategic Project PEst-C/CTM/LA0025/2013-14 and the research project PTDC/CTM-ENE/2514/2012. Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhance…
Photocurrent enhancement in thin a-Si:H solar cells via plasmonic light trapping
Photocurrent enhancement in thin a-Si:H solar cells due to the plasmonic light trapping is investigated, and correlated with the morphology and the optical properties of the selfassembled silver nanoparticles incorporated in the cells' back reflector. © 2014 OSA.
Colloidal plasmonic back reflectors for light trapping in solar cells.
A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhib…
Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation
An innovative method for Si nanostructures (NS) fabrication is proposed, through nanosecond laser irradiation (lambda = 532 nm) of thin Si film (120 nm) on quartz. Varying the laser energy fluences (425-1130 mJ/cm(2)) distinct morphologies of Si NS appear, going from interconnected structures to isolated clusters. Film breaking occurs through a laser-induced dewetting process. Raman scattering is enhanced in all the obtained Si NS, with the largest enhancement in interconnected Si structures, pointing out an increased trapping of light due to multiple scattering. The reported method is fast, scalable and cheap, and can be applied for light management in photovoltaics. (C) 2013 AIP Publishin…
Anomalous and normal Hall effect in hydrogenated amorphous Si prepared by plasma enhanced chemical vapor deposition
The double sign anomaly of the Hall coefficient has been studied in p -doped and n -doped hydrogenated amorphous silicon grown by plasma enhanced chemical vapor deposition and annealed up to 500 °C. Dark conductivity as a function of temperature has been measured, pointing out a conduction mechanism mostly through the extended states. Anomalous Hall effect has been observed only in the as-deposited n -doped film, disappearing after annealing at 500 °C, while p -doped samples exhibit normal Hall effect. When Hall anomaly is present, a larger optical band gap and a greater Raman peak associated with Si-H bond are measured in comparison with the cases of normal Hall effect. The Hall anomaly wi…
TCO/Ag/TCO transparent electrodes for solar cells application
Among transparent electrodes, transparent conductive oxides (TCO)/metal/TCO structures can achieve optical and electrical performances comparable to, or better than, single TCO layers and very thin metallic films. In this work, we report on thin multilayers based on aluminum zinc oxide (AZO), indium tin oxide (ITO) and Ag deposited by RF magnetron sputtering on soda lime glass at room temperature. The TCO/Ag/TCO structures with thicknesses of about 50/10/50 nm were deposited with all combinations of AZO and ITO as top and bottom layers. While the electrical conductivity is dominated by the Ag intralayer irrespective of the TCO nature, the optical transmissions show a dependence on the natur…
Influence of the electro-optical properties of an a-Si:H single layer on the performances of a pin solar cell
We analyze the results of an extensive characterization study involving electrical and optical measurements carried out on hydrogenated amorphous silicon (α-Si:H) thin film materials fabricated under a wide range of deposition conditions. By adjusting the synthesis parameters, we evidenced how conductivity, activation energy, electrical transport and optical absorption of an α-Si:H layer can be modified and optimized. We analyzed the activation energy and the pre-exponential factor of the dark conductivity by varying the dopant-to-silane gas flow ratio. Optical measurements allowed to extract the absorption spectra and the optical bandgap. Additionally, we report on the temperature dependen…
Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties
The spectra of localized surface plasmon resonances (LSPRs) in self-assembled silver nanoparticles (NPs), prepared by solid-state dewetting of thin films, are discussed in terms of their structural properties. We summarize the dependences of size and shape of NPs on the fabrication conditions with a proposed structural-phase diagram. It was found that the surface coverage distribution and the mean surface coverage (SC) size were the most appropriate statistical parameters to describe the correlation between the morphology and the optical properties of the nanostructures. The results are interpreted with theoretical predictions based on Mie theory. The broadband scattering efficiency of LSPR…
Formation and evolution of self-organized Au nanorings on indium-tin-oxide surface
This work reports on the formation of Au nanoclusters and on their evolution in nanoring structures on indium-tin-oxide surface by sputtering deposition and annealing processes. The quantification of the characteristics of the nanorings (surface density, depth, height, and width) is performed by atomic force microscopy. The possibility to control these characteristics by tuning annealing temperature and time is demonstrated establishing relations which allow to set the process parameters to obtain nanostructures of desired morphological properties for various technological applications. © 2011 American Institute of Physics.
Nanostructuring thin Au films on transparent conductive oxide substrates
Fabrication processes of Au nanostructures on indium-tin-oxide (ITO) surface by simple, versatile, and low-cost bottom-up methodologies are investigated in this work. A first methodology exploits the patterning effects induced by nanosecond laser irradiations on thin Au films deposited on ITO surface. We show that after the laser irradiations, the Au film break-up into nanoclusters whose mean size and surface density are tunable by the laser fluence. A second methodology exploits, instead, the patterning effects of standard furnace thermal processes on the Au film deposited on the ITO. We observe, in this case, a peculiar shape evolution from pre-formed nanoclusters during the Au deposition…
Sputtered cuprous oxide thin films and nitrogen doping by ion implantation
Abstract The structural, optical and electrical properties of sputtered cuprous oxide thin films have been optimized through post-deposition thermal treatments. Moreover we have studied the effects of nitrogen doping introduced by ion implantation followed by the optimized oxidant thermal annealing. Three concentrations have been used, 0.6 N%, 1.2 N%, and 2.5 N%. Along with the preservation of the Cu 2 O phase, a slight optical band gap narrowing and a significant conductivity enhancement has been observed with respect to the undoped samples. These results can be justified by the absence of further oxygen vacancies promoted by dopant introduction and by the substitution of O atoms by N ones…
Light harvesting with Ge quantum dots embedded in SiO2 and Si3N4
Cataloged from PDF version of article. Germanium quantum dots (QDs) embedded in SiO2 or in Si3N4 have been studied for light harvesting purposes. SiGeO or SiGeN thin films, produced by plasma enhanced chemical vapor deposition, have been annealed up to 850 degrees C to induce Ge QD precipitation in Si based matrices. By varying the Ge content, the QD diameter can be tuned in the 3-9 nm range in the SiO2 matrix, or in the 1-2 nm range in the Si3N4 matrix, as measured by transmission electron microscopy. Thus, Si3N4 matrix hosts Ge QDs at higher density and more closely spaced than SiO2 matrix. Raman spectroscopy revealed a higher threshold for amorphous-to-crystalline transition for Ge QDs e…
Laser irradiation of ZnO:Al/Ag/ZnO:Al multilayers for electrical isolation in thin film photovoltaics
Laser irradiation of ZnO:Al/Ag/ZnO:Al transparent contacts is investigated for segmentation purposes. The quality of the irradiated areas has been experimentally evaluated by separation resistance measurements, and the results are complemented with a thermal model used for numerical simulations of the laser process. The presence of the Ag interlayer plays two key effects on the laser scribing process by increasing the maximum temperature reached in the structure and accelerating the cool down process. These evidences can promote the use of ultra-thin ZnO:Al/ Ag/ZnO:Al electrode in large-area products, such as for solar modules. © 2013 Crupi et al.; licensee Springer.
Light absorption in silicon quantum dots embedded in silica
The photon absorption in Si quantum dots (QDs) embedded in SiO2 has been systematically investigated by varying several parameters of the QD synthesis. Plasma-enhanced chemical vapor deposition (PECVD) or magnetron cosputtering (MS) have been used to deposit, upon quartz substrates, single layer, or multilayer structures of Si-rich- SiO2 (SRO) with different Si content (43-46 at. %). SRO samples have been annealed for 1 h in the 450-1250 °C range and characterized by optical absorption measurements, photoluminescence analysis, Rutherford backscattering spectrometry and x-ray Photoelectron Spectroscopy. After annealing up to 900 °C SRO films grown by MS show a higher absorption coefficient a…
Room-temperature efficient light detection by amorphous Ge quantum wells
In this work, ultrathin amorphous Ge films (2 to 30 nm in thickness) embedded in SiO2 layers were grown by magnetron sputtering and employed as proficient light sensitizer in photodetector devices. A noteworthy modification of the visible photon absorption is evidenced due to quantum confinement effects which cause both a blueshift (from 0.8 to 1.8 eV) in the bandgap and an enhancement (up to three times) in the optical oscillator strength of confined carriers. The reported quantum confinement effects have been exploited to enhance light detection by Ge quantum wells, as demonstrated by photodetectors with an internal quantum efficiency of 70%. © 2013 Cosentino et al.
Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes
Al-doped ZnO (AZO)/Ag/AZO multilayer coatings (50-70 nm thick) were grown at room temperature on glass substrates with different silver layer thickness, from 3 to 19 nm, by using radio frequency magnetron sputtering. Thermal stability of the compositional, optical and electrical properties of the AZO/Ag/AZO structures were investigated up to 400 °C and as a function of Ag film thickness. An AZO film as thin as 20 nm is an excellent barrier to Ag diffusion. The inclusion of 9.5 nm thin silver layer within the transparent conductive oxide (TCO) material leads to a maximum enhancement of the electro-optical characteristics. The excellent measured properties of low resistance, high transmittanc…