6533b85afe1ef96bd12ba05a

RESEARCH PRODUCT

Sputtered cuprous oxide thin films and nitrogen doping by ion implantation

F. MoscatelliV. PriviteraIsodiana CrupiFrancesca SimoneMaria MiritelloPaolo Sberna

subject

OxidantPostimplantation annealingLattice configurationMaterials scienceBand gapAnnealing (metallurgy)NitrogenInorganic chemistryOxidePhotovoltaic application02 engineering and technology01 natural sciencesOxygen vacancieSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materiachemistry.chemical_compoundSputtering0103 physical sciencesMaterials ChemistryDopingSemiconductor dopingConductivity enhancementDoping (additives)Thin filmIonDepositionOxide film010302 applied physicsDopantDopingMetals and AlloysSputteringSurfaces and Interfaces021001 nanoscience & nanotechnologyOut of equilibriumSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsEnergy gapOptical and electrical propertieIon implantationchemistryIon implantationThermal-annealing0210 nano-technologyCopperCuprous oxide

description

Abstract The structural, optical and electrical properties of sputtered cuprous oxide thin films have been optimized through post-deposition thermal treatments. Moreover we have studied the effects of nitrogen doping introduced by ion implantation followed by the optimized oxidant thermal annealing. Three concentrations have been used, 0.6 N%, 1.2 N%, and 2.5 N%. Along with the preservation of the Cu 2 O phase, a slight optical band gap narrowing and a significant conductivity enhancement has been observed with respect to the undoped samples. These results can be justified by the absence of further oxygen vacancies promoted by dopant introduction and by the substitution of O atoms by N ones. This lattice configuration has been guaranteed by the post implantation annealing in oxidant atmosphere. The used doping technique represents an original out-of-equilibrium approach toward the formation of low-resistivity contacts on Cu 2 O films for photovoltaic applications.

10.1016/j.tsf.2016.01.005http://hdl.handle.net/10447/176727