0000000000740546

AUTHOR

V. Privitera

Role of the strain in the epitaxial regrowth rate of heavily doped amorphous Si films

Solid phase epitaxial regrowth (SPER) of p -doped preamorphized Si was studied by time resolved reflectivity. Strain and dopant concentration were opportunely varied by implanting neutral (Ge) and isovalent (B, Ga) impurities in order to disentangle the two different effects on SPER. Larger SPER rate variations occurred in strained doped Si with respect to undoped samples. The generalized Fermi level shifting model was implemented to include the role of the strain and to fit the experimental data over a large range of temperature for p - and n -type doping. We introduced a charged defect, whose energy level is independent of the dopant species. © 2008 American Institute of Physics.

research product

Sputtered cuprous oxide thin films and nitrogen doping by ion implantation

Abstract The structural, optical and electrical properties of sputtered cuprous oxide thin films have been optimized through post-deposition thermal treatments. Moreover we have studied the effects of nitrogen doping introduced by ion implantation followed by the optimized oxidant thermal annealing. Three concentrations have been used, 0.6 N%, 1.2 N%, and 2.5 N%. Along with the preservation of the Cu 2 O phase, a slight optical band gap narrowing and a significant conductivity enhancement has been observed with respect to the undoped samples. These results can be justified by the absence of further oxygen vacancies promoted by dopant introduction and by the substitution of O atoms by N ones…

research product

MATERIALS AND PROCESSING ISSUES FOR THE MANUFACTURING OF INTEGRATED PASSIVE AND ACTIVE DEVICES ON FLEXIBLE SUBSTRATES

Plast_ICs is a Public/Private Laboratory funded by Italian Government aimed to build a novel technological platform for the development of flexible electronics, mainly, but not solely, based on thin inorganic films. Integration of different functions, on single and/or multiple plastic foils, to generate a smart system is the final goal of the project. The building blocks of the platform will be presented, starting from the different plastic substrates characterization, going through the development of active devices, such as thin-film- transistors, and passive devices, like thin-film- resistors, capacitors, inductors. Fully inorganic elementary devices, based on optical patterning and in va…

research product