0000000000637318

AUTHOR

Paolo Sberna

showing 2 related works from this author

Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation

2013

An innovative method for Si nanostructures (NS) fabrication is proposed, through nanosecond laser irradiation (lambda = 532 nm) of thin Si film (120 nm) on quartz. Varying the laser energy fluences (425-1130 mJ/cm(2)) distinct morphologies of Si NS appear, going from interconnected structures to isolated clusters. Film breaking occurs through a laser-induced dewetting process. Raman scattering is enhanced in all the obtained Si NS, with the largest enhancement in interconnected Si structures, pointing out an increased trapping of light due to multiple scattering. The reported method is fast, scalable and cheap, and can be applied for light management in photovoltaics. (C) 2013 AIP Publishin…

Innovative methodMaterials sciencePhysics and Astronomy (miscellaneous)Settore ING-INF/01 - ElettronicaLight scatteringQuartz SiliconSettore FIS/03 - Fisica Della Materialaw.inventionsymbols.namesakeLight managementSi nanostructures NanostructurelawDewetting proceLaser energieDewettingThin filmbusiness.industryScatteringIsolated clusterLaserInterconnected structureSemiconductorsymbolsOptoelectronicsbusinessRaman spectroscopyPhotovoltaicRaman scattering
researchProduct

Sputtered cuprous oxide thin films and nitrogen doping by ion implantation

2016

Abstract The structural, optical and electrical properties of sputtered cuprous oxide thin films have been optimized through post-deposition thermal treatments. Moreover we have studied the effects of nitrogen doping introduced by ion implantation followed by the optimized oxidant thermal annealing. Three concentrations have been used, 0.6 N%, 1.2 N%, and 2.5 N%. Along with the preservation of the Cu 2 O phase, a slight optical band gap narrowing and a significant conductivity enhancement has been observed with respect to the undoped samples. These results can be justified by the absence of further oxygen vacancies promoted by dopant introduction and by the substitution of O atoms by N ones…

OxidantPostimplantation annealingLattice configurationMaterials scienceBand gapAnnealing (metallurgy)NitrogenInorganic chemistryOxidePhotovoltaic application02 engineering and technology01 natural sciencesOxygen vacancieSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materiachemistry.chemical_compoundSputtering0103 physical sciencesMaterials ChemistryDopingSemiconductor dopingConductivity enhancementDoping (additives)Thin filmIonDepositionOxide film010302 applied physicsDopantDopingMetals and AlloysSputteringSurfaces and Interfaces021001 nanoscience & nanotechnologyOut of equilibriumSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsEnergy gapOptical and electrical propertieIon implantationchemistryIon implantationThermal-annealing0210 nano-technologyCopperCuprous oxide
researchProduct