6533b833fe1ef96bd129c328

RESEARCH PRODUCT

Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties

Seweryn MorawiecManuel J. MendesIsodiana CrupiSalvatore MirabellaFrancesca SimoneFrancesco PrioloFrancesco Priolo

subject

Materials scienceMie scatteringSilver nanoparticlePhysics::OpticsPlasmonBioengineeringNanotechnologyScattering efficiency02 engineering and technologyStatistical parameterSettore ING-INF/01 - Elettronica01 natural sciences7. Clean energySilver nanoparticlelaw.inventionlawSurface coverage0103 physical sciencesSolar cellGeneral Materials ScienceDewettingElectrical and Electronic EngineeringThin filmPlasmon010302 applied physicsScatteringSurface plasmon resonance SilverMechanical EngineeringSolar cellStructural and optical propertieGeneral ChemistryLocalized surface plasmon resonance021001 nanoscience & nanotechnologyOptical propertiePhase diagramMechanics of MaterialsThin-film solar cells Nanoparticle0210 nano-technologySilver nanoparticle (NPs)Localized surface plasmon

description

The spectra of localized surface plasmon resonances (LSPRs) in self-assembled silver nanoparticles (NPs), prepared by solid-state dewetting of thin films, are discussed in terms of their structural properties. We summarize the dependences of size and shape of NPs on the fabrication conditions with a proposed structural-phase diagram. It was found that the surface coverage distribution and the mean surface coverage (SC) size were the most appropriate statistical parameters to describe the correlation between the morphology and the optical properties of the nanostructures. The results are interpreted with theoretical predictions based on Mie theory. The broadband scattering efficiency of LSPRs in the nanostructures is discussed towards application as plasmon-enhanced back reflectors in thin-film solar cells. © 2013 IOP Publishing Ltd.

10.1088/0957-4484/24/26/265601https://publications.cnr.it/doc/229929