0000000000162018
AUTHOR
Salvo Mirabella
Growth kinetics of colloidal Ge nanocrystals for light harvesters
Colloidal Ge nanocrystals (NCs) are gaining increased interest because of their potential application in low-cost optoelectronic and light harvesting devices. However, reliable control of colloidal NC synthesis is often an issue and a deeper understanding of the key-role parameters governing NC growth is highly required. Here we report an extended investigation on the growth of colloidal Ge NCs synthesized from a one-pot solution based approach. A systematic study of the effects of synthesis time, temperature and precursor concentration is elucidated in detail. X-ray diffraction (XRD) analysis reveals the presence of crystalline Ge NCs with a mean size (from 5 to 35 nm) decreasing with the …
Low-cost high-haze films based on ZnO nanorods for light scattering in thin c-Si solar cells
Light scattering from ZnO nanorods (NR) is investigated, modeled, and applied to a solar cell. ZnO NR (120-1300 nm long, 280-60 nm large), grown by low-cost chemical bath deposition at 90 degrees C, exhibit diffused-to-total transmitted light as high as 70% and 30% in the 400 and 1000 nm wavelength range, respectively. Data and scattering simulation show that ZnO NR length plays a crucial role in light diffusion effect. A transparent ZnO NR film grown on glass and placed on top of a 1 mu m thick c-Si solar cell is shown to enhance the light-current conversion efficiency for wavelengths longer than 600 nm. (C) 2015 AIP Publishing LLC.
Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors
The authors acknowledge Francesco Ruffino for the AFM measurements. This work was funded by the EU FP7 Marie Curie Action FP7-PEOPLE-2010-ITN through the PROPHET project (Grant No. 264687), the bilateral CNR/AVCR project "Photoresponse of nanostructures for advanced photovoltaic applications", the MIUR project Energetic (Grant no. PON02_00355_3391233) and by the Portuguese Science Foundation (FCT-MEC) through the Strategic Project PEst-C/CTM/LA0025/2013-14 and the research project PTDC/CTM-ENE/2514/2012. Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhance…
Light absorption and electrical transport in Si:O alloys for photovoltaics
Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 °C. Boron implantation (30 keV, 3-30× 1014 B/cm2) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was …
Role of Ge nanoclusters in the performance of photodetectors compatible with Si technology
In this work, we investigate the spectral response of metal-oxide- semiconductor photodetectors based on Ge nanoclusters (NCs) embedded in a silicon dioxide (SiO2) matrix. The role of Ge NC size and density on the spectral response was evaluated by comparing the performance of PDs based on either densely packed arrays of 2 nm-diameter NCs or a more sparse array of 8 nm-diameter Ge NCs. Our Ge NC photodetectors exhibit a high spectral responsivity in the 500-1000 nm range with internal quantum efficiency of ~ 700% at - 10 V, and with NC array parameters such as NC density and size playing a crucial role in the photoconductive gain and response time. We find that the configuration with a more…
High-efficiency silicon-compatible photodetectors based on Ge quantum dots
We report on high responsivity, broadband metal/insulator/semiconductor photodetectors with amorphous Ge quantum dots (a-Ge QDs) as the active absorbers embedded in a silicon dioxide matrix. Spectral responsivities between 1-4 A/W are achieved in the 500-900 nm wavelength range with internal quantum efficiencies (IQEs) as high as ∼700%. We investigate the role of a-Ge QDs in the photocurrent generation and explain the high IQE as a result of transport mechanisms via photoexcited QDs. These results suggest that a-Ge QDs are promising for high-performance integrated optoelectronic devices that are fully compatible with silicon technology in terms of fabrication and thermal budget. © 2011 Amer…
Size dependent light absorption modulation and enhanced carrier transport in germanium quantum dots devices
Quantum confinement in closely packed arrays of Ge quantum dots (QDs) was studied for energy applications. In this work, we report an efficient tuning mechanism of the light harvesting and detection of Ge QDs. Thin films of SiGeO alloys, produced by rf-magnetron sputtering, were annealed at 600 degrees C in N-2 to induce precipitation of small amorphous Ge QDs into the oxide matrix. Varying the Ge content, the QD size was tailored between 2 and 4 nm, as measured by high resolution transmission electron microscopy. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of pure SiO2, as well as the presence of a sub-stoichiometric Ge oxide shell at the QD interface. Light …
Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation
An innovative method for Si nanostructures (NS) fabrication is proposed, through nanosecond laser irradiation (lambda = 532 nm) of thin Si film (120 nm) on quartz. Varying the laser energy fluences (425-1130 mJ/cm(2)) distinct morphologies of Si NS appear, going from interconnected structures to isolated clusters. Film breaking occurs through a laser-induced dewetting process. Raman scattering is enhanced in all the obtained Si NS, with the largest enhancement in interconnected Si structures, pointing out an increased trapping of light due to multiple scattering. The reported method is fast, scalable and cheap, and can be applied for light management in photovoltaics. (C) 2013 AIP Publishin…
Anomalous and normal Hall effect in hydrogenated amorphous Si prepared by plasma enhanced chemical vapor deposition
The double sign anomaly of the Hall coefficient has been studied in p -doped and n -doped hydrogenated amorphous silicon grown by plasma enhanced chemical vapor deposition and annealed up to 500 °C. Dark conductivity as a function of temperature has been measured, pointing out a conduction mechanism mostly through the extended states. Anomalous Hall effect has been observed only in the as-deposited n -doped film, disappearing after annealing at 500 °C, while p -doped samples exhibit normal Hall effect. When Hall anomaly is present, a larger optical band gap and a greater Raman peak associated with Si-H bond are measured in comparison with the cases of normal Hall effect. The Hall anomaly wi…
Density of States evaluation of Molybdenum Oxide for c-Si solar cell
Silicon-based heterojunction technology (HJT) is one of the most promising candidates for high performance and low cost solar cells with world-record efficiency close to 27% in IBC architecture. The HJT exploits the excellent passivation properties of hydrogenated amorphous silicon (a-Si:H); although, the use of doped a-Si:H has drawbacks such as parasitic absorption and low-thermal budget to cope with back-end metallization. Replacing the p-type a-Si:H with molybdenum oxide (MoOx) is a viable alternative. Optimizing this hole-selective layer is needed; however information on the defect density of states (DOS), linked to oxygen vacancies is still lacking.
Light absorption and conversion in solar cell based on Si:O alloy
Thin film Si:O alloys have been grown by plasma enhanced chemical vapor deposition, as intrinsic or highly doped (1 to 5 at. % of B or P dopant) layers. UV-visible/near-infrared spectroscopy revealed a great dependence of the absorption coefficient and of the optical gap (Eg) on the dopant type and concentration, as Eg decreases from 2.1 to 1.9 eV, for the intrinsic or highly p-doped sample, respectively. Thermal annealing up to 400 °C induces a huge H out-diffusion which causes a dramatic absorption increase and a reduction of Eg, down to less than 1.8 eV. A prototypal solar cell has been fabricated using a 400 nm thick, p-i-n structure made of Si:O alloy embedded within flat transparent c…
Transient photoresponse and incident power dependence of high-efficiency germanium quantum dot photodetectors
We report a systematic study of time-resolved and power-dependent photoresponse in high-efficiency germanium quantum dot photodetectors (Ge-QD PDs), with internal quantum efficiencies greater than 100 over a broad wavelength, reverse bias, and incident power range. Turn-on and turn-off response times (τ on and τ off) are shown to depend on series resistance, bias, optical power, and thickness (W QD) of the Ge-QD layer, with measured τ off values down to ∼40 ns. Two different photoconduction regimes are observed at low and high reverse bias, with a transition around -3 V. A transient current overshoot phenomenon is also observed, which depends on bias and illumination power. © 2012 American …
Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition
Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies (Vo) were identified in ZnO nanorods (NRs) grown by low cost chemical bath deposition. A transient behaviour in the photoluminescence (PL) intensity of the two Vo states was found to be sensitive to the ambient environment and to NR post-growth treatment. The largest transient was found in samples dried on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV exposure exhibited a transient behaviour in full agreement with the PL transient, indicating a clear role of atmospheric O-2 on the surface defect states. A model fo…
Light harvesting with Ge quantum dots embedded in SiO2 and Si3N4
Cataloged from PDF version of article. Germanium quantum dots (QDs) embedded in SiO2 or in Si3N4 have been studied for light harvesting purposes. SiGeO or SiGeN thin films, produced by plasma enhanced chemical vapor deposition, have been annealed up to 850 degrees C to induce Ge QD precipitation in Si based matrices. By varying the Ge content, the QD diameter can be tuned in the 3-9 nm range in the SiO2 matrix, or in the 1-2 nm range in the Si3N4 matrix, as measured by transmission electron microscopy. Thus, Si3N4 matrix hosts Ge QDs at higher density and more closely spaced than SiO2 matrix. Raman spectroscopy revealed a higher threshold for amorphous-to-crystalline transition for Ge QDs e…