6533b7d1fe1ef96bd125d6bd
RESEARCH PRODUCT
Growth kinetics of colloidal Ge nanocrystals for light harvesters
Isodiana CrupiIsodiana CrupiAntonio TerrasiGiacomo TorrisiRosario RacitiMassimo ZimboneSalvo MirabellaSalvatore CosentinoSalvatore Cosentinosubject
Materials scienceScanning electron microscopePHOTODETECTORSGeneral Chemical EngineeringPhotodetectorNanotechnology02 engineering and technologyActivation energy010402 general chemistry01 natural sciencesSettore ING-INF/01 - ElettronicaColloidDynamic light scatteringPEDOT:PSSGermanium; Quantum dot; PHOTODETECTORSchemistry.chemical_classificationGermaniumQuantum dotGeneral ChemistryPolymer021001 nanoscience & nanotechnology0104 chemical scienceschemistryChemical engineeringNanocrystaloptoelectronic devices colloidal nanocrystals0210 nano-technologydescription
Colloidal Ge nanocrystals (NCs) are gaining increased interest because of their potential application in low-cost optoelectronic and light harvesting devices. However, reliable control of colloidal NC synthesis is often an issue and a deeper understanding of the key-role parameters governing NC growth is highly required. Here we report an extended investigation on the growth of colloidal Ge NCs synthesized from a one-pot solution based approach. A systematic study of the effects of synthesis time, temperature and precursor concentration is elucidated in detail. X-ray diffraction (XRD) analysis reveals the presence of crystalline Ge NCs with a mean size (from 5 to 35 nm) decreasing with the increase of precursor concentration. Such a trend was further confirmed by scanning electron microscopy (SEM) and dynamic light scattering (DLS) analysis. Moreover, the temporal NC size evolution shows a typical saturating behaviour, where characteristic time shortens at higher precursor concentration. All these growth features were satisfactorily simulated by a numerical NC growth model, evidencing that the kinetics of NC growth is controlled by a reaction-limited regime with typical activation energy of 0.7 eV. Finally, light absorption in the visible region and the successful realization of a hybrid photodetector, employing colloidal Ge NCs embedded in PEDOT:PSS polymer, showed the capability of low-cost colloidal Ge to act as light harvester. These results put new understanding for a reliable control of colloidal NC growth and the development of low-cost devices.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 |