0000000000162014

AUTHOR

Antonio Terrasi

0000-0002-0291-6923

showing 15 related works from this author

Growth kinetics of colloidal Ge nanocrystals for light harvesters

2016

Colloidal Ge nanocrystals (NCs) are gaining increased interest because of their potential application in low-cost optoelectronic and light harvesting devices. However, reliable control of colloidal NC synthesis is often an issue and a deeper understanding of the key-role parameters governing NC growth is highly required. Here we report an extended investigation on the growth of colloidal Ge NCs synthesized from a one-pot solution based approach. A systematic study of the effects of synthesis time, temperature and precursor concentration is elucidated in detail. X-ray diffraction (XRD) analysis reveals the presence of crystalline Ge NCs with a mean size (from 5 to 35 nm) decreasing with the …

Materials scienceScanning electron microscopePHOTODETECTORSGeneral Chemical EngineeringPhotodetectorNanotechnology02 engineering and technologyActivation energy010402 general chemistry01 natural sciencesSettore ING-INF/01 - ElettronicaColloidDynamic light scatteringPEDOT:PSSGermanium; Quantum dot; PHOTODETECTORSchemistry.chemical_classificationGermaniumQuantum dotGeneral ChemistryPolymer021001 nanoscience & nanotechnology0104 chemical scienceschemistryChemical engineeringNanocrystaloptoelectronic devices colloidal nanocrystals0210 nano-technology
researchProduct

Role of Ge nanoclusters in the performance of photodetectors compatible with Si technology

2013

In this work, we investigate the spectral response of metal-oxide- semiconductor photodetectors based on Ge nanoclusters (NCs) embedded in a silicon dioxide (SiO2) matrix. The role of Ge NC size and density on the spectral response was evaluated by comparing the performance of PDs based on either densely packed arrays of 2 nm-diameter NCs or a more sparse array of 8 nm-diameter Ge NCs. Our Ge NC photodetectors exhibit a high spectral responsivity in the 500-1000 nm range with internal quantum efficiency of ~ 700% at - 10 V, and with NC array parameters such as NC density and size playing a crucial role in the photoconductive gain and response time. We find that the configuration with a more…

NanoclusterMaterials sciencechemistry.chemical_elementPhotodetectorGermaniumPhotoconductive gainSettore ING-INF/01 - ElettronicaNanoclustersResponse time (computer systems) GermaniumHigh-efficiency photodetectorGermanium; Nanocluster; High-efficiency photodetectorsSparse arrayHigh-efficiencyResponse timeMaterials ChemistryGainPhotodetectorbusiness.industryGermaniumPhotoconductivityInternal quantum efficiencyMetals and AlloysResponse timeSurfaces and InterfacesPhotonSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsRecombination centerchemistrySemiconductor photodetectorHigh-efficiency photodetectorsOptoelectronicsSpectral responseQuantum efficiencybusinessExcitationSpectral responsivity Nanocluster
researchProduct

High-efficiency silicon-compatible photodetectors based on Ge quantum dots

2011

We report on high responsivity, broadband metal/insulator/semiconductor photodetectors with amorphous Ge quantum dots (a-Ge QDs) as the active absorbers embedded in a silicon dioxide matrix. Spectral responsivities between 1-4 A/W are achieved in the 500-900 nm wavelength range with internal quantum efficiencies (IQEs) as high as ∼700%. We investigate the role of a-Ge QDs in the photocurrent generation and explain the high IQE as a result of transport mechanisms via photoexcited QDs. These results suggest that a-Ge QDs are promising for high-performance integrated optoelectronic devices that are fully compatible with silicon technology in terms of fabrication and thermal budget. © 2011 Amer…

Amorphous siliconMaterials scienceThermal budgetPhysics and Astronomy (miscellaneous)SiliconSilicon TechnologieResponsivitychemistry.chemical_elementSettore ING-INF/01 - Elettronicachemistry.chemical_compoundResponsivityMetal/insulator/semiconductorGe quantum dotWavelength ranges Amorphous siliconPhotocurrent generationPhotodetectorOptoelectronic devicePhotocurrentGermaniumbusiness.industrySemiconductor quantum dotInternal quantum efficiencymatrixTRANSPORTSemiconductorNANOCRYSTALSSilica Quantum efficiencychemistryQuantum dot laserQuantum dotOptoelectronicsQuantum efficiencyTransport mechanismGAINbusinessNANOCRYSTALS TRANSPORT GAINFully compatibleHigh efficiency
researchProduct

Size dependent light absorption modulation and enhanced carrier transport in germanium quantum dots devices

2015

Quantum confinement in closely packed arrays of Ge quantum dots (QDs) was studied for energy applications. In this work, we report an efficient tuning mechanism of the light harvesting and detection of Ge QDs. Thin films of SiGeO alloys, produced by rf-magnetron sputtering, were annealed at 600 degrees C in N-2 to induce precipitation of small amorphous Ge QDs into the oxide matrix. Varying the Ge content, the QD size was tailored between 2 and 4 nm, as measured by high resolution transmission electron microscopy. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of pure SiO2, as well as the presence of a sub-stoichiometric Ge oxide shell at the QD interface. Light …

Precipitation (chemical)Materials scienceAmorphous alloyBand gapchemistry.chemical_elementHigh resolution transmission electron microscopyPhotoconductive gainGermaniumNanocrystalMetal-insulator semiconductor deviceSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaAbsorption spectroscopyQuantum confinement effectQuantum confinementElectromagnetic wave absorptionLight absorptionThin filmGermanium oxideOxide filmHigh-resolution transmission electron microscopyGermanium quantum dotPotential wellMIS deviceAmorphous filmGermaniumQuantum dotsRenewable Energy Sustainability and the Environmentbusiness.industryPhotoconductivitySolar cellPreferential trappingMIM deviceSemiconductor deviceSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPhotovoltaicschemistryMetal insulator boundarieQuantum dotrf-Magnetron sputtering Semiconductor quantum dotOptoelectronicsCharge carrierX ray photoelectron spectroscopy Effective mass approximationbusinessQuantum chemistryPhotovoltaicMagnetron sputteringSolar Energy Materials and Solar Cells
researchProduct

Ge nanostructures for harvesting and detection of light

2015

No abstract available

Physics and Astronomy (all)Engineering (all)Settore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materia
researchProduct

Anomalous and normal Hall effect in hydrogenated amorphous Si prepared by plasma enhanced chemical vapor deposition

2010

The double sign anomaly of the Hall coefficient has been studied in p -doped and n -doped hydrogenated amorphous silicon grown by plasma enhanced chemical vapor deposition and annealed up to 500 °C. Dark conductivity as a function of temperature has been measured, pointing out a conduction mechanism mostly through the extended states. Anomalous Hall effect has been observed only in the as-deposited n -doped film, disappearing after annealing at 500 °C, while p -doped samples exhibit normal Hall effect. When Hall anomaly is present, a larger optical band gap and a greater Raman peak associated with Si-H bond are measured in comparison with the cases of normal Hall effect. The Hall anomaly wi…

inorganic chemicalsAmorphous siliconMaterials scienceSiliconAnnealing (metallurgy)Band gapeducationGeneral Physics and Astronomychemistry.chemical_elementSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaCondensed Matter::Materials Sciencechemistry.chemical_compoundsymbols.namesakePlasma-enhanced chemical vapor depositionHall effectSi-H bondingElectrical measurementsCondensed matter physicsHall effecttechnology industry and agricultureoptical gapCondensed Matter::Mesoscopic Systems and Quantum Hall EffectAmorphous solidchemistryHydrogenated amorphous siliconsymbolsdark conductivityRaman spectroscopypsychological phenomena and processes
researchProduct

TCO/Ag/TCO transparent electrodes for solar cells application

2014

Among transparent electrodes, transparent conductive oxides (TCO)/metal/TCO structures can achieve optical and electrical performances comparable to, or better than, single TCO layers and very thin metallic films. In this work, we report on thin multilayers based on aluminum zinc oxide (AZO), indium tin oxide (ITO) and Ag deposited by RF magnetron sputtering on soda lime glass at room temperature. The TCO/Ag/TCO structures with thicknesses of about 50/10/50 nm were deposited with all combinations of AZO and ITO as top and bottom layers. While the electrical conductivity is dominated by the Ag intralayer irrespective of the TCO nature, the optical transmissions show a dependence on the natur…

Soda-lime glassMaterials scienceTransparent electrode Electrodeschemistry.chemical_elementPhotovoltaic applicationrf-Magnetron sputteringMetalTransparent conductive oxideElectrical resistivity and conductivityAluminiumElectrical conductivityGeneral Materials ScienceElectrical performanceElectrical conductorbusiness.industryGeneral ChemistrySputter depositionElectrical and optical propertieITO glaIndium tin oxidechemistryvisual_artElectrodevisual_art.visual_art_mediumOptoelectronicsbusinessSilver Aluminum zinc oxideAluminum coatingMagnetron sputtering
researchProduct

Ion irradiation of AZO thin films for flexible electronics

2017

Aluminum doped Zinc oxide (AZO) is a promising transparent conductor for solar cells, displays and touch-screen technologies. The resistivity of AZO is typically improved by thermal annealing at temperatures not suitable for plastic substrates. Here we present a non-thermal route to improve the electrical and structural properties of AZO by irradiating the TCO films with O+ or Ar+ ion beams (30–350 keV, 3 × 1015–3 × 1016 ions/cm2) after the deposition on glass and flexible polyethylene naphthalate (PEN). X-ray diffraction, optical absorption, electrical measurements, Rutherford Backscattering Spectrometry and Atomic Force Microscopy evidenced an increase of the crystalline grain size and a …

Nuclear and High Energy PhysicsMaterials science02 engineering and technology01 natural sciencesSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaOpticsTransparent conductive oxideElectrical resistivity and conductivity0103 physical sciencesAZO ; Transparent conductive oxide ; Ion implantationElectrical measurementsThin filmPolyethylene naphthalateFlexible and transparent electronicInstrumentationTransparent conducting filmNuclear and High Energy Physic010302 applied physicsbusiness.industryAZO021001 nanoscience & nanotechnologyRutherford backscattering spectrometryIon implantationIon implantationOptoelectronicsCrystallite0210 nano-technologybusinessPhotovoltaic
researchProduct

Transient photoresponse and incident power dependence of high-efficiency germanium quantum dot photodetectors

2012

We report a systematic study of time-resolved and power-dependent photoresponse in high-efficiency germanium quantum dot photodetectors (Ge-QD PDs), with internal quantum efficiencies greater than 100 over a broad wavelength, reverse bias, and incident power range. Turn-on and turn-off response times (τ on and τ off) are shown to depend on series resistance, bias, optical power, and thickness (W QD) of the Ge-QD layer, with measured τ off values down to ∼40 ns. Two different photoconduction regimes are observed at low and high reverse bias, with a transition around -3 V. A transient current overshoot phenomenon is also observed, which depends on bias and illumination power. © 2012 American …

Materials sciencePhotoresponseReverse biaGeneral Physics and Astronomychemistry.chemical_elementPhotodetectorGermaniumOptical powerPhotoconductionTime-resolvedSettore ING-INF/01 - ElettronicaSeries resistanceOpticsElectrical resistance and conductancePhotodetectorOptical powerEquivalent series resistanceSystematic studybusiness.industryPhotoconductivityInternal quantum efficiencyQuantum-dot photodetectorPhotonWavelengthSemiconductor quantum dots GermaniumchemistryQuantum dotTransient current Electric resistanceOptoelectronicsIncident powerbusiness
researchProduct

Robustness and electrical reliability of AZO/Ag/AZO thin film after bending stress

2017

Abstract The increasing interest in thin flexible and bendable devices has led to a strong demand for mechanically robust and electrically reliable transparent electrodes. Indium doped Tin Oxide (ITO) and Aluminium doped Zinc Oxide (AZO) are among the most employed transparent conductive oxides (TCO) and their reliability on flexible substrates have thus received a great attention. However, a high flexibility is usually achieved at very low thickness, which, unfortunately, compromises the electrical conductivity. Here we report the effects of mechanical bending cycles on the electrical and optical properties of ultra thin AZO/Ag/AZO multilayers (45 nm/10 nm/45 nm) and, for comparison, of AZ…

Materials scienceScanning electron microscopeThin filmschemistry.chemical_element02 engineering and technologySettore ING-INF/01 - Elettronica01 natural sciencesSettore FIS/03 - Fisica Della MateriaTransparent conductive oxideElectrical resistance and conductance0103 physical sciencesThin filmThin filmComposite materialPolyethylene naphthalateElectrical conductor010302 applied physicsRenewable Energy Sustainability and the EnvironmentElectronic Optical and Magnetic MaterialTransparent conductive oxide; Thin films; PhotovoltaicsSputtering021001 nanoscience & nanotechnologyTin oxideSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPhotovoltaicschemistryElectrode0210 nano-technologyPhotovoltaicFlexibleIndiumSolar Energy Materials and Solar Cells
researchProduct

Light harvesting with Ge quantum dots embedded in SiO2 and Si3N4

2014

Cataloged from PDF version of article. Germanium quantum dots (QDs) embedded in SiO2 or in Si3N4 have been studied for light harvesting purposes. SiGeO or SiGeN thin films, produced by plasma enhanced chemical vapor deposition, have been annealed up to 850 degrees C to induce Ge QD precipitation in Si based matrices. By varying the Ge content, the QD diameter can be tuned in the 3-9 nm range in the SiO2 matrix, or in the 1-2 nm range in the Si3N4 matrix, as measured by transmission electron microscopy. Thus, Si3N4 matrix hosts Ge QDs at higher density and more closely spaced than SiO2 matrix. Raman spectroscopy revealed a higher threshold for amorphous-to-crystalline transition for Ge QDs e…

Light-harvestingMaterials sciencegenetic structuresBand gapAnalytical chemistryGeneral Physics and AstronomyPhotodetectorchemistry.chemical_elementGermaniumGermanium NanocrystalsSettore ING-INF/01 - Elettronicasymbols.namesakeGe quantum dotPlasma-enhanced chemical vapor depositionThin filmFilmsbusiness.industrySilicon-nitridechemistryQuantum dotsymbolsOptoelectronicsQuantum efficiencyMechanismbusinessRaman spectroscopyConfinement
researchProduct

Laser irradiation of ZnO:Al/Ag/ZnO:Al multilayers for electrical isolation in thin film photovoltaics

2013

Laser irradiation of ZnO:Al/Ag/ZnO:Al transparent contacts is investigated for segmentation purposes. The quality of the irradiated areas has been experimentally evaluated by separation resistance measurements, and the results are complemented with a thermal model used for numerical simulations of the laser process. The presence of the Ag interlayer plays two key effects on the laser scribing process by increasing the maximum temperature reached in the structure and accelerating the cool down process. These evidences can promote the use of ultra-thin ZnO:Al/ Ag/ZnO:Al electrode in large-area products, such as for solar modules. © 2013 Crupi et al.; licensee Springer.

Materials scienceTransparent electrodesThin film photovoltaicNanochemistryNanotechnologyTransparent electrode AluminumSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materialaw.inventionElectrical isolationIrradiated areaMaterials Science(all)PhotovoltaicslawTransparent electrodes ; Multilayers; Pulsed laser scribingMultilayerGeneral Materials ScienceIrradiationThin filmLaser scribingNano Expressbusiness.industryMaximum temperaturePulsed laser scribingCondensed Matter PhysicsLaserThin film photovoltaicsMultilayersElectrical isolationElectrodeOptoelectronicsResistance measurementLaser scribing proceZinc oxide Film preparationbusinessLaser scribing
researchProduct

Light absorption in silicon quantum dots embedded in silica

2009

The photon absorption in Si quantum dots (QDs) embedded in SiO2 has been systematically investigated by varying several parameters of the QD synthesis. Plasma-enhanced chemical vapor deposition (PECVD) or magnetron cosputtering (MS) have been used to deposit, upon quartz substrates, single layer, or multilayer structures of Si-rich- SiO2 (SRO) with different Si content (43-46 at. %). SRO samples have been annealed for 1 h in the 450-1250 °C range and characterized by optical absorption measurements, photoluminescence analysis, Rutherford backscattering spectrometry and x-ray Photoelectron Spectroscopy. After annealing up to 900 °C SRO films grown by MS show a higher absorption coefficient a…

SOLAR-CELLSPhotoluminescenceMaterials scienceEFFICIENCYSiliconAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_elementChemical vapor depositionOPTICAL-PROPERTIESRutherford backscattering spectrometryFILMSSettore ING-INF/01 - Elettronica3RD-GENERATION PHOTOVOLTAICSSettore FIS/03 - Fisica Della MateriaMULTIPLE EXCITON GENERATIONchemistryX-ray photoelectron spectroscopyPlasma-enhanced chemical vapor depositionQuantum dotRAY PHOTOELECTRON-SPECTROSCOPYLUMINESCENCESI NANOCRYSTALSCOEFFICIENTAbsorption (electromagnetic radiation)
researchProduct

Room-temperature efficient light detection by amorphous Ge quantum wells

2013

In this work, ultrathin amorphous Ge films (2 to 30 nm in thickness) embedded in SiO2 layers were grown by magnetron sputtering and employed as proficient light sensitizer in photodetector devices. A noteworthy modification of the visible photon absorption is evidenced due to quantum confinement effects which cause both a blueshift (from 0.8 to 1.8 eV) in the bandgap and an enhancement (up to three times) in the optical oscillator strength of confined carriers. The reported quantum confinement effects have been exploited to enhance light detection by Ge quantum wells, as demonstrated by photodetectors with an internal quantum efficiency of 70%. © 2013 Cosentino et al.

NanostructurePhotonMaterials sciencePhotodetectorCONFINEMENTBlue shiftOptical oscillator strengthMaterials Science(all)Quantum confinement effectLight detectionQuantum confinementGeneral Materials ScienceLight absorptionPhotodetectorQuantum wellPotential wellNano ExpressPhoton absorptionSUPERLATTICESGermaniumbusiness.industryRoom temperature Amorphous filmInternal quantum efficiencyNANOCLUSTERSSemiconductor quantum wellCondensed Matter PhysicsPhotonNanostructuresBlueshiftAmorphous solidQuantum dotOptoelectronicsPHOTOLUMINESCENCEQuantum efficiencybusinessUltrathin films GermaniumGe quantum well
researchProduct

Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes

2012

Al-doped ZnO (AZO)/Ag/AZO multilayer coatings (50-70 nm thick) were grown at room temperature on glass substrates with different silver layer thickness, from 3 to 19 nm, by using radio frequency magnetron sputtering. Thermal stability of the compositional, optical and electrical properties of the AZO/Ag/AZO structures were investigated up to 400 °C and as a function of Ag film thickness. An AZO film as thin as 20 nm is an excellent barrier to Ag diffusion. The inclusion of 9.5 nm thin silver layer within the transparent conductive oxide (TCO) material leads to a maximum enhancement of the electro-optical characteristics. The excellent measured properties of low resistance, high transmittanc…

High transmittanceDiffusionrf-Magnetron sputteringElectro-optical characteristicGlass substrateTransparent conductive oxide RF magnetron sputtering Optical properties Electrical resistivity Al-doped zinc oxide Silver MultilayersSettore ING-INF/01 - ElettronicaSUBSTRATE-TEMPERATUREAg diffusionAl-doped ZnOLow resistanceMultilayerZNOMaterials ChemistryVisible spectral rangeMULTILAYER FILMSAl-doped zinc oxideOptical propertiesMetals and AlloysAZO filmElectrical resistivityOPTICAL-PROPERTIESOXIDE-FILMSSurfaces and InterfacesZinc oxide AluminumRadio frequency magnetron sputteringSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOptical and electrical propertieElectrodeOptoelectronicsFilm preparationLayer (electronics)Magnetron sputteringUltra-thinRF magnetron sputteringMaterials scienceSilverThermodynamic stabilityOpticsTransparent conductive oxideElectrical resistivity and conductivityThermal stabilityElectrical conductorTransparent conducting filmRoom temperatureThin film solar cellbusiness.industryTransparent conductiveOptical propertieSilver layerHigh transmittanceMultilayersMulti-layer-coatingZnO Electric conductivityMeasured propertiebusinessSubstrate
researchProduct