6533b850fe1ef96bd12a84f2
RESEARCH PRODUCT
Ion irradiation of AZO thin films for flexible electronics
Alessandra AlbertiSalvatore MirabellaStefano BoscarinoFrancesco RuffinoGiacomo TorrisiAntonio TerrasiIsodiana Crupisubject
Nuclear and High Energy PhysicsMaterials science02 engineering and technology01 natural sciencesSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaOpticsTransparent conductive oxideElectrical resistivity and conductivity0103 physical sciencesAZO ; Transparent conductive oxide ; Ion implantationElectrical measurementsThin filmPolyethylene naphthalateFlexible and transparent electronicInstrumentationTransparent conducting filmNuclear and High Energy Physic010302 applied physicsbusiness.industryAZO021001 nanoscience & nanotechnologyRutherford backscattering spectrometryIon implantationIon implantationOptoelectronicsCrystallite0210 nano-technologybusinessPhotovoltaicdescription
Aluminum doped Zinc oxide (AZO) is a promising transparent conductor for solar cells, displays and touch-screen technologies. The resistivity of AZO is typically improved by thermal annealing at temperatures not suitable for plastic substrates. Here we present a non-thermal route to improve the electrical and structural properties of AZO by irradiating the TCO films with O+ or Ar+ ion beams (30–350 keV, 3 × 1015–3 × 1016 ions/cm2) after the deposition on glass and flexible polyethylene naphthalate (PEN). X-ray diffraction, optical absorption, electrical measurements, Rutherford Backscattering Spectrometry and Atomic Force Microscopy evidenced an increase of the crystalline grain size and a complete relief of the lattice strain upon ion beam irradiation. Indeed, the resistivity of thin AZO films irradiated at room temperature decreased of two orders of magnitude, similarly to a thermal annealing at 400 °C. We also show that the improvement of the electrical properties does not simply depend on the strain or polycrystalline domain size, as often stated in the literature.
year | journal | country | edition | language |
---|---|---|---|---|
2017-02-01 |