Rayleigh-instability-driven dewetting of thin Au and Ag films on indium-tin-oxide surface under nanosecond laser irradiations
Investigations have been carried out on laser-beam-induced nanoparticle (NP) formation in thin (5 nm) Au and Ag films on indium-tin-oxide substrate. After the irradiation the films were observed to break-up into NPs through a dewetting mechanism. This mechanism was investigated as a Rayleigh-instability- driven process. In fact, for each used laser fluence, the resulting Au and Ag NPs' mean size and surface-to-surface mean distance were quantified and correlated between them in the framework of the Rayleigh-instability theory showing an excellent agreement. © The Institution of Engineering and Technology 2013.
Polymer/metal hybrid multilayers modified Schottky devices
Insulating, polymethylmethacrylate (PMMA), and semiconducting, poly(3-hexylthiophene) (P3HT), nanometer thick polymers/Au nanoparticles based hybrid multilayers (HyMLs) were fabricated on p-Si single-crystal substrate. An iterative method, which involves, respectively, spin-coating (PMMA and P3HT deposition) and sputtering (Au nanoparticles deposition) techniques to prepare Au/HyMLs/p-Si Schottky device, was used. The barrier height and the ideality factor of the Au/HyMLs/p-Si Schottky devices were investigated by current-voltage measurements in the thickness range of 1-5 bilayers. It was observed that the barrier height of such hybrid layered systems can be tuned as a function of bilayers …
Influence of the electro-optical properties of an a-Si:H single layer on the performances of a pin solar cell
We analyze the results of an extensive characterization study involving electrical and optical measurements carried out on hydrogenated amorphous silicon (α-Si:H) thin film materials fabricated under a wide range of deposition conditions. By adjusting the synthesis parameters, we evidenced how conductivity, activation energy, electrical transport and optical absorption of an α-Si:H layer can be modified and optimized. We analyzed the activation energy and the pre-exponential factor of the dark conductivity by varying the dopant-to-silane gas flow ratio. Optical measurements allowed to extract the absorption spectra and the optical bandgap. Additionally, we report on the temperature dependen…
Ion irradiation of AZO thin films for flexible electronics
Aluminum doped Zinc oxide (AZO) is a promising transparent conductor for solar cells, displays and touch-screen technologies. The resistivity of AZO is typically improved by thermal annealing at temperatures not suitable for plastic substrates. Here we present a non-thermal route to improve the electrical and structural properties of AZO by irradiating the TCO films with O+ or Ar+ ion beams (30–350 keV, 3 × 1015–3 × 1016 ions/cm2) after the deposition on glass and flexible polyethylene naphthalate (PEN). X-ray diffraction, optical absorption, electrical measurements, Rutherford Backscattering Spectrometry and Atomic Force Microscopy evidenced an increase of the crystalline grain size and a …
Formation and evolution of self-organized Au nanorings on indium-tin-oxide surface
This work reports on the formation of Au nanoclusters and on their evolution in nanoring structures on indium-tin-oxide surface by sputtering deposition and annealing processes. The quantification of the characteristics of the nanorings (surface density, depth, height, and width) is performed by atomic force microscopy. The possibility to control these characteristics by tuning annealing temperature and time is demonstrated establishing relations which allow to set the process parameters to obtain nanostructures of desired morphological properties for various technological applications. © 2011 American Institute of Physics.
Nanostructuring thin Au films on transparent conductive oxide substrates
Fabrication processes of Au nanostructures on indium-tin-oxide (ITO) surface by simple, versatile, and low-cost bottom-up methodologies are investigated in this work. A first methodology exploits the patterning effects induced by nanosecond laser irradiations on thin Au films deposited on ITO surface. We show that after the laser irradiations, the Au film break-up into nanoclusters whose mean size and surface density are tunable by the laser fluence. A second methodology exploits, instead, the patterning effects of standard furnace thermal processes on the Au film deposited on the ITO. We observe, in this case, a peculiar shape evolution from pre-formed nanoclusters during the Au deposition…
Schottky barrier height tuning by Hybrid organic-inorganic multilayers
ABSTRACTSemiconducting and insulating polymers and copolymers/Au nanograins based hybrid multilayers (HyMLs) were fabricated on p-Si single-crystal substrate by an iterative method that involves, respectively, Langmuir-Blodgett and spin-coating techniques (for the deposition of organic film) and sputtering technique (for the deposition of metal nanograins) to prepare Au/HyMLs/p-Si Schottky device. The electrical properties of the Au/HyMLs/p-Si Schottky device were investigated by current-voltage (I–V) measurements in the thickness range of 1-5 bilayers (BL).At different number of layers, current-voltage (I–V) measurements were performed. Results showed a rectifying behavior. Junction parame…
Pd/Au/SiC Nanostructured Diodes for Nanoelectronics: Room Temperature Electrical Properties
Pd/Au/SiC nanostructured Schottky diodes were fabricated embedding Au nanoparticles (NPs) at the metalsemiconductor interface of macroscopic Pd/SiC contacts. The Au NPs mean size was varied controlling the temperature and time of opportune annealing processes. The electrical characteristics of the nanostructured diodes were studied as a function of the NPs mean size. In particular, using the standard theory of thermoionic emission, we obtained the effective Schottky barrier height (SBH) and the effective ideality factor observing their dependence on the annealing time and temperature being the signature of their dependence on the mean NP size. Furthermore, plotting the effective SBH as a fu…
Formation and Evolution of Nanoscale Metal Structures on ITO Surface by Nanosecond Laser Irradiations of Thin Au and Ag Films
The effect of nanosecond laser irradiations on 5 nm thick sputter-deposited Au and Ag films on Indium-Tin-Oxide surface is investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). After 500, 750, and 1000 mJ/cm 2 fluence irradiations, the breakup of the Au and Ag films into nanoscale islands is observed as a consequence of fast melting and solidification processes. The mean nanoparticles size and surface density are quantified, as a function of the laser fluence, by the AFM and SEM analyses. In particular, the comparison between the Au and Ag islands reveals the formation of larger islands in the case of Ag for each fixed fluence. The mechanism of the nanoscale …
Room-Temperature Electrical Characteristics of Pd∕SiC Diodes with Embedded Au Nanoparticles at the Interface
We investigate the effects of localized controlled nanometric inhomogeneities, represented by Au nanoparticles, on the electrical properties of Pd/SiC Schottky diodes. In particular, we investigate the effects of the nanoparticle radius R on the current-voltage characteristics. The main result concerns the strong dependence of the effective Schottky barrier height of the Pd/SiC contact on R, giving a practical technique to tailor, in a wide range, such a barrier height by simply changing the process parameters during the diode preparation. Then, from a basic understanding point of view, such data allow us to test the Tung model describing the effects of inhomogeneities on the electrical pro…