0000000000162015

AUTHOR

Giacomo Torrisi

Growth kinetics of colloidal Ge nanocrystals for light harvesters

Colloidal Ge nanocrystals (NCs) are gaining increased interest because of their potential application in low-cost optoelectronic and light harvesting devices. However, reliable control of colloidal NC synthesis is often an issue and a deeper understanding of the key-role parameters governing NC growth is highly required. Here we report an extended investigation on the growth of colloidal Ge NCs synthesized from a one-pot solution based approach. A systematic study of the effects of synthesis time, temperature and precursor concentration is elucidated in detail. X-ray diffraction (XRD) analysis reveals the presence of crystalline Ge NCs with a mean size (from 5 to 35 nm) decreasing with the …

research product

Ion irradiation of AZO thin films for flexible electronics

Aluminum doped Zinc oxide (AZO) is a promising transparent conductor for solar cells, displays and touch-screen technologies. The resistivity of AZO is typically improved by thermal annealing at temperatures not suitable for plastic substrates. Here we present a non-thermal route to improve the electrical and structural properties of AZO by irradiating the TCO films with O+ or Ar+ ion beams (30–350 keV, 3 × 1015–3 × 1016 ions/cm2) after the deposition on glass and flexible polyethylene naphthalate (PEN). X-ray diffraction, optical absorption, electrical measurements, Rutherford Backscattering Spectrometry and Atomic Force Microscopy evidenced an increase of the crystalline grain size and a …

research product

Robustness and electrical reliability of AZO/Ag/AZO thin film after bending stress

Abstract The increasing interest in thin flexible and bendable devices has led to a strong demand for mechanically robust and electrically reliable transparent electrodes. Indium doped Tin Oxide (ITO) and Aluminium doped Zinc Oxide (AZO) are among the most employed transparent conductive oxides (TCO) and their reliability on flexible substrates have thus received a great attention. However, a high flexibility is usually achieved at very low thickness, which, unfortunately, compromises the electrical conductivity. Here we report the effects of mechanical bending cycles on the electrical and optical properties of ultra thin AZO/Ag/AZO multilayers (45 nm/10 nm/45 nm) and, for comparison, of AZ…

research product

Laser irradiation of ZnO:Al/Ag/ZnO:Al multilayers for electrical isolation in thin film photovoltaics

Laser irradiation of ZnO:Al/Ag/ZnO:Al transparent contacts is investigated for segmentation purposes. The quality of the irradiated areas has been experimentally evaluated by separation resistance measurements, and the results are complemented with a thermal model used for numerical simulations of the laser process. The presence of the Ag interlayer plays two key effects on the laser scribing process by increasing the maximum temperature reached in the structure and accelerating the cool down process. These evidences can promote the use of ultra-thin ZnO:Al/ Ag/ZnO:Al electrode in large-area products, such as for solar modules. © 2013 Crupi et al.; licensee Springer.

research product