6533b85cfe1ef96bd12bcb1b
RESEARCH PRODUCT
Robustness and electrical reliability of AZO/Ag/AZO thin film after bending stress
Isodiana CrupiGiacomo TorrisiAntonio TerrasiSalvatore Mirabellasubject
Materials scienceScanning electron microscopeThin filmschemistry.chemical_element02 engineering and technologySettore ING-INF/01 - Elettronica01 natural sciencesSettore FIS/03 - Fisica Della MateriaTransparent conductive oxideElectrical resistance and conductance0103 physical sciencesThin filmThin filmComposite materialPolyethylene naphthalateElectrical conductor010302 applied physicsRenewable Energy Sustainability and the EnvironmentElectronic Optical and Magnetic MaterialTransparent conductive oxide; Thin films; PhotovoltaicsSputtering021001 nanoscience & nanotechnologyTin oxideSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPhotovoltaicschemistryElectrode0210 nano-technologyPhotovoltaicFlexibleIndiumdescription
Abstract The increasing interest in thin flexible and bendable devices has led to a strong demand for mechanically robust and electrically reliable transparent electrodes. Indium doped Tin Oxide (ITO) and Aluminium doped Zinc Oxide (AZO) are among the most employed transparent conductive oxides (TCO) and their reliability on flexible substrates have thus received a great attention. However, a high flexibility is usually achieved at very low thickness, which, unfortunately, compromises the electrical conductivity. Here we report the effects of mechanical bending cycles on the electrical and optical properties of ultra thin AZO/Ag/AZO multilayers (45 nm/10 nm/45 nm) and, for comparison, of AZO and ITO single layers whose thickness was, in both cases, 100 nm and 700 nm, deposited at room-temperature on flexible polyethylene naphthalate (PEN) plastic substrates. The electrical stability of the films after several cycles of bending were evaluated by monitoring the relative variation of the electrical resistance with respect to the as prepared sample; the structural damage induced by bending was detected by Scanning Electron Microscopy (SEM). We observed an excellent electrical stability and high flexibility in the AZO/Ag/AZO sample even after 100 cycles, whereas for the single AZO and ITO films the resistivity rapidly increases. The experimental results and numerical simulations provide clear evidences of the key role played by the ductile Ag interlayer that provides improved robustness under mechanical strain.
year | journal | country | edition | language |
---|---|---|---|---|
2017-06-01 | Solar Energy Materials and Solar Cells |