0000000000162019

AUTHOR

Salvatore Cosentino

showing 7 related works from this author

Growth kinetics of colloidal Ge nanocrystals for light harvesters

2016

Colloidal Ge nanocrystals (NCs) are gaining increased interest because of their potential application in low-cost optoelectronic and light harvesting devices. However, reliable control of colloidal NC synthesis is often an issue and a deeper understanding of the key-role parameters governing NC growth is highly required. Here we report an extended investigation on the growth of colloidal Ge NCs synthesized from a one-pot solution based approach. A systematic study of the effects of synthesis time, temperature and precursor concentration is elucidated in detail. X-ray diffraction (XRD) analysis reveals the presence of crystalline Ge NCs with a mean size (from 5 to 35 nm) decreasing with the …

Materials scienceScanning electron microscopePHOTODETECTORSGeneral Chemical EngineeringPhotodetectorNanotechnology02 engineering and technologyActivation energy010402 general chemistry01 natural sciencesSettore ING-INF/01 - ElettronicaColloidDynamic light scatteringPEDOT:PSSGermanium; Quantum dot; PHOTODETECTORSchemistry.chemical_classificationGermaniumQuantum dotGeneral ChemistryPolymer021001 nanoscience & nanotechnology0104 chemical scienceschemistryChemical engineeringNanocrystaloptoelectronic devices colloidal nanocrystals0210 nano-technology
researchProduct

Role of Ge nanoclusters in the performance of photodetectors compatible with Si technology

2013

In this work, we investigate the spectral response of metal-oxide- semiconductor photodetectors based on Ge nanoclusters (NCs) embedded in a silicon dioxide (SiO2) matrix. The role of Ge NC size and density on the spectral response was evaluated by comparing the performance of PDs based on either densely packed arrays of 2 nm-diameter NCs or a more sparse array of 8 nm-diameter Ge NCs. Our Ge NC photodetectors exhibit a high spectral responsivity in the 500-1000 nm range with internal quantum efficiency of ~ 700% at - 10 V, and with NC array parameters such as NC density and size playing a crucial role in the photoconductive gain and response time. We find that the configuration with a more…

NanoclusterMaterials sciencechemistry.chemical_elementPhotodetectorGermaniumPhotoconductive gainSettore ING-INF/01 - ElettronicaNanoclustersResponse time (computer systems) GermaniumHigh-efficiency photodetectorGermanium; Nanocluster; High-efficiency photodetectorsSparse arrayHigh-efficiencyResponse timeMaterials ChemistryGainPhotodetectorbusiness.industryGermaniumPhotoconductivityInternal quantum efficiencyMetals and AlloysResponse timeSurfaces and InterfacesPhotonSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsRecombination centerchemistrySemiconductor photodetectorHigh-efficiency photodetectorsOptoelectronicsSpectral responseQuantum efficiencybusinessExcitationSpectral responsivity Nanocluster
researchProduct

High-efficiency silicon-compatible photodetectors based on Ge quantum dots

2011

We report on high responsivity, broadband metal/insulator/semiconductor photodetectors with amorphous Ge quantum dots (a-Ge QDs) as the active absorbers embedded in a silicon dioxide matrix. Spectral responsivities between 1-4 A/W are achieved in the 500-900 nm wavelength range with internal quantum efficiencies (IQEs) as high as ∼700%. We investigate the role of a-Ge QDs in the photocurrent generation and explain the high IQE as a result of transport mechanisms via photoexcited QDs. These results suggest that a-Ge QDs are promising for high-performance integrated optoelectronic devices that are fully compatible with silicon technology in terms of fabrication and thermal budget. © 2011 Amer…

Amorphous siliconMaterials scienceThermal budgetPhysics and Astronomy (miscellaneous)SiliconSilicon TechnologieResponsivitychemistry.chemical_elementSettore ING-INF/01 - Elettronicachemistry.chemical_compoundResponsivityMetal/insulator/semiconductorGe quantum dotWavelength ranges Amorphous siliconPhotocurrent generationPhotodetectorOptoelectronic devicePhotocurrentGermaniumbusiness.industrySemiconductor quantum dotInternal quantum efficiencymatrixTRANSPORTSemiconductorNANOCRYSTALSSilica Quantum efficiencychemistryQuantum dot laserQuantum dotOptoelectronicsQuantum efficiencyTransport mechanismGAINbusinessNANOCRYSTALS TRANSPORT GAINFully compatibleHigh efficiency
researchProduct

Size dependent light absorption modulation and enhanced carrier transport in germanium quantum dots devices

2015

Quantum confinement in closely packed arrays of Ge quantum dots (QDs) was studied for energy applications. In this work, we report an efficient tuning mechanism of the light harvesting and detection of Ge QDs. Thin films of SiGeO alloys, produced by rf-magnetron sputtering, were annealed at 600 degrees C in N-2 to induce precipitation of small amorphous Ge QDs into the oxide matrix. Varying the Ge content, the QD size was tailored between 2 and 4 nm, as measured by high resolution transmission electron microscopy. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of pure SiO2, as well as the presence of a sub-stoichiometric Ge oxide shell at the QD interface. Light …

Precipitation (chemical)Materials scienceAmorphous alloyBand gapchemistry.chemical_elementHigh resolution transmission electron microscopyPhotoconductive gainGermaniumNanocrystalMetal-insulator semiconductor deviceSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaAbsorption spectroscopyQuantum confinement effectQuantum confinementElectromagnetic wave absorptionLight absorptionThin filmGermanium oxideOxide filmHigh-resolution transmission electron microscopyGermanium quantum dotPotential wellMIS deviceAmorphous filmGermaniumQuantum dotsRenewable Energy Sustainability and the Environmentbusiness.industryPhotoconductivitySolar cellPreferential trappingMIM deviceSemiconductor deviceSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPhotovoltaicschemistryMetal insulator boundarieQuantum dotrf-Magnetron sputtering Semiconductor quantum dotOptoelectronicsCharge carrierX ray photoelectron spectroscopy Effective mass approximationbusinessQuantum chemistryPhotovoltaicMagnetron sputteringSolar Energy Materials and Solar Cells
researchProduct

Transient photoresponse and incident power dependence of high-efficiency germanium quantum dot photodetectors

2012

We report a systematic study of time-resolved and power-dependent photoresponse in high-efficiency germanium quantum dot photodetectors (Ge-QD PDs), with internal quantum efficiencies greater than 100 over a broad wavelength, reverse bias, and incident power range. Turn-on and turn-off response times (τ on and τ off) are shown to depend on series resistance, bias, optical power, and thickness (W QD) of the Ge-QD layer, with measured τ off values down to ∼40 ns. Two different photoconduction regimes are observed at low and high reverse bias, with a transition around -3 V. A transient current overshoot phenomenon is also observed, which depends on bias and illumination power. © 2012 American …

Materials sciencePhotoresponseReverse biaGeneral Physics and Astronomychemistry.chemical_elementPhotodetectorGermaniumOptical powerPhotoconductionTime-resolvedSettore ING-INF/01 - ElettronicaSeries resistanceOpticsElectrical resistance and conductancePhotodetectorOptical powerEquivalent series resistanceSystematic studybusiness.industryPhotoconductivityInternal quantum efficiencyQuantum-dot photodetectorPhotonWavelengthSemiconductor quantum dots GermaniumchemistryQuantum dotTransient current Electric resistanceOptoelectronicsIncident powerbusiness
researchProduct

Light harvesting with Ge quantum dots embedded in SiO2 and Si3N4

2014

Cataloged from PDF version of article. Germanium quantum dots (QDs) embedded in SiO2 or in Si3N4 have been studied for light harvesting purposes. SiGeO or SiGeN thin films, produced by plasma enhanced chemical vapor deposition, have been annealed up to 850 degrees C to induce Ge QD precipitation in Si based matrices. By varying the Ge content, the QD diameter can be tuned in the 3-9 nm range in the SiO2 matrix, or in the 1-2 nm range in the Si3N4 matrix, as measured by transmission electron microscopy. Thus, Si3N4 matrix hosts Ge QDs at higher density and more closely spaced than SiO2 matrix. Raman spectroscopy revealed a higher threshold for amorphous-to-crystalline transition for Ge QDs e…

Light-harvestingMaterials sciencegenetic structuresBand gapAnalytical chemistryGeneral Physics and AstronomyPhotodetectorchemistry.chemical_elementGermaniumGermanium NanocrystalsSettore ING-INF/01 - Elettronicasymbols.namesakeGe quantum dotPlasma-enhanced chemical vapor depositionThin filmFilmsbusiness.industrySilicon-nitridechemistryQuantum dotsymbolsOptoelectronicsQuantum efficiencyMechanismbusinessRaman spectroscopyConfinement
researchProduct

Room-temperature efficient light detection by amorphous Ge quantum wells

2013

In this work, ultrathin amorphous Ge films (2 to 30 nm in thickness) embedded in SiO2 layers were grown by magnetron sputtering and employed as proficient light sensitizer in photodetector devices. A noteworthy modification of the visible photon absorption is evidenced due to quantum confinement effects which cause both a blueshift (from 0.8 to 1.8 eV) in the bandgap and an enhancement (up to three times) in the optical oscillator strength of confined carriers. The reported quantum confinement effects have been exploited to enhance light detection by Ge quantum wells, as demonstrated by photodetectors with an internal quantum efficiency of 70%. © 2013 Cosentino et al.

NanostructurePhotonMaterials sciencePhotodetectorCONFINEMENTBlue shiftOptical oscillator strengthMaterials Science(all)Quantum confinement effectLight detectionQuantum confinementGeneral Materials ScienceLight absorptionPhotodetectorQuantum wellPotential wellNano ExpressPhoton absorptionSUPERLATTICESGermaniumbusiness.industryRoom temperature Amorphous filmInternal quantum efficiencyNANOCLUSTERSSemiconductor quantum wellCondensed Matter PhysicsPhotonNanostructuresBlueshiftAmorphous solidQuantum dotOptoelectronicsPHOTOLUMINESCENCEQuantum efficiencybusinessUltrathin films GermaniumGe quantum well
researchProduct