6533b853fe1ef96bd12ad6ec

RESEARCH PRODUCT

Light absorption and conversion in solar cell based on Si:O alloy

Isodiana CrupiFrancesca De SimoneSalvo MirabellaM. RubinoG. G. ScapellatoS. Di Marco

subject

Open circuit voltageSiliconAbsorption co-efficientMaterials scienceAnnealing (metallurgy)Analytical chemistryGeneral Physics and AstronomyPhotovoltaic effectChemical vapor depositionSettore ING-INF/01 - Elettronicalaw.inventionPlasma enhanced chemical vapor depositionOut-diffusionPlasma-enhanced chemical vapor depositionlawSolar cellDoping (additives)Thin filmAbsorption (electromagnetic radiation)Infrared spectroscopyElectrical analysiDopantDopingP-i-n structureDevice fabricationThermal-annealingSolar cells Silicon alloysPhotovoltaicTransparent conductive oxides Cerium alloy

description

Thin film Si:O alloys have been grown by plasma enhanced chemical vapor deposition, as intrinsic or highly doped (1 to 5 at. % of B or P dopant) layers. UV-visible/near-infrared spectroscopy revealed a great dependence of the absorption coefficient and of the optical gap (Eg) on the dopant type and concentration, as Eg decreases from 2.1 to 1.9 eV, for the intrinsic or highly p-doped sample, respectively. Thermal annealing up to 400 °C induces a huge H out-diffusion which causes a dramatic absorption increase and a reduction of Eg, down to less than 1.8 eV. A prototypal solar cell has been fabricated using a 400 nm thick, p-i-n structure made of Si:O alloy embedded within flat transparent conductive oxides. Preliminary electrical analyses show a photovoltaic (PV) effect with an open circuit voltage of 0.75 V and a spectral conversion efficiency blue-shifted in comparison to a-Si:H based cell, as expected since the higher Eg in Si:O alloy. These data are presented and discussed, suggesting Si:O alloy as promising material for PV device fabrication. © 2013 AIP Publishing LLC.

https://doi.org/10.1063/1.4817247